scholarly journals Using paired catchments to quantify the human influence on hydrological droughts

2019 ◽  
Vol 23 (3) ◽  
pp. 1725-1739 ◽  
Author(s):  
Anne F. Van Loon ◽  
Sally Rangecroft ◽  
Gemma Coxon ◽  
José Agustín Breña Naranjo ◽  
Floris Van Ogtrop ◽  
...  

Abstract. Quantifying the influence of human activities, such as reservoir building, water abstraction, and land use change, on hydrology is crucial for sustainable future water management, especially during drought. Model-based methods are very time-consuming to set up and require a good understanding of human processes and time series of water abstraction, land use change, and water infrastructure and management, which often are not available. Therefore, observation-based methods are being developed that give an indication of the direction and magnitude of the human influence on hydrological drought based on limited data. We suggest adding to those methods a “paired-catchment” approach, based on the classic hydrology approach that was developed in the 1920s for assessing the impact of land cover treatment on water quantity and quality. When applying the paired-catchment approach to long-term pre-existing human influences trying to detect an influence on extreme events such as droughts, a good catchment selection is crucial. The disturbed catchment needs to be paired with a catchment that is similar in all aspects except for the human activity under study, in that way isolating the effect of that specific activity. In this paper, we present a framework for selecting suitable paired catchments for the study of the human influence on hydrological drought. Essential elements in this framework are the availability of qualitative information on the human activity under study (type, timing, and magnitude), and the similarity of climate, geology, and other human influences between the catchments. We show the application of the framework on two contrasting case studies, one impacted by groundwater abstraction and one with a water transfer from another region. Applying the paired-catchment approach showed how the groundwater abstraction aggravated streamflow drought by more than 200 % for some metrics (total drought duration and total drought deficit) and the water transfer alleviated droughts with 25 % to 80 %, dependent on the metric. Benefits of the paired-catchment approach are that climate variability between pre- and post-disturbance periods does not have to be considered as the same time periods are used for analysis, and that it avoids assumptions considered when partly or fully relying on simulation modelling. Limitations of the approach are that finding a suitable catchment pair can be very challenging, often no pre-disturbance records are available to establish the natural difference between the catchments, and long time series of hydrological data are needed to robustly detect the effect of the human activities on hydrological drought. We suggest that the approach can be used for a first estimate of the human influence on hydrological drought, to steer campaigns to collect more data, and to complement and improve other existing methods (e.g. model-based or large-sample approaches).

2019 ◽  
Vol 11 (3) ◽  
pp. 609-622 ◽  
Author(s):  
Saeideh Maleki ◽  
Saeid Soltani Koupaei ◽  
Alireza Soffianian ◽  
Sassan Saatchi ◽  
Saeid Pourmanafi ◽  
...  

Abstract Negative impacts of climate change on ecosystems have been increasing, and both the intensification and the mitigation of these impacts are strongly linked with human activities. Management and reduction of human-induced disturbances on ecosystems can mitigate the effects of climate change and enhance the ecosystem recovery process. Here, we investigate coupled human and climate effects on the wetland ecosystem of the lower Helmand basin from 1977 to 2014. Using time series climate-variable data and land-use changes from Landsat time series imagery, we compared changes in ecosystem status between the upstream and downstream regions. Results show that despite a strong and prolonged drought in the region, the upstream region of the lower Helmand basin remained dominated by agriculture, causing severe water stress on the Hamoun wetlands downstream. The loss of available water in wetlands was followed by large-scale land abandonment in rural areas, migration to the cities, and increasing unemployment and economic hardship. Our results suggest that unsustainable land-use policies in the upstream region, combined with synergistic effects of human activities and climate in lower Helmand basin, have exacerbated the effects of water stress on local inhabitants in the downstream region.


2015 ◽  
Vol 737 ◽  
pp. 728-731 ◽  
Author(s):  
Yuan Yuan Han ◽  
Tao Cai

In this study, Soil and Water Assessment Tool (SWAT) model was used to simulate land-use change effects on water quantity in the upper Huaihe river basin above the Xixian hydrological controlling station with a catchment area of 10,190 km2 by the use of three-phase (1980s、1990s、2000s) land-use maps, soil type map (1:200000), 1980 to 2008 daily time series of rainfall from the upper Huaihe river basin. On the basis of the simulated time series of daily runoff, land-use change effects on spatio-temporal change patterns of runoff coefficients and runoff modules were investigated. The results revealed that under the same condition of soil texture and terrain slope the advantage for runoff generation and the sensitivity of rainfall-runoff relationship to rainfall descended by farmland, paddy field, woodland.The outputs could provide important references for soil and water conservation and river health protection in the upper stream of Huaihe river.


2017 ◽  
Vol 4 (2) ◽  
pp. 109
Author(s):  
Kunihiko Yoshino ◽  
Yudi Setiawan ◽  
Eikichi Shima

In this study, time series datasets of MODIS EVI (Enhanced Vegetation Index) data from 2002 and 2011 in the Brantas River watershed located in eastern Java, Indonesia were analyzed and classified to make ten land use maps for each year, in order to support watershed land use planning which takes into account local land use and trends in land use change. These land use maps with eight types of main land use categories were examined. During the 10 years period, forested area has expanded, while upland, paddy rice field, mixed garden and plantation have decreased. One of the reasons for this land use change is ascribed to tree planting under the joint forest management system by local people and the state forest corporation.


2021 ◽  
Vol 13 (6) ◽  
pp. 3130
Author(s):  
Sanja Manojlović ◽  
Mikica Sibinović ◽  
Tanja Srejić ◽  
Abosa Hadud ◽  
Ibrahim Sabri

This study expounds the dynamic relationships among agricultural land-use change, rural population migration, and sediment transport. The variability of suspended sediment load was detected by Mann–Kendall and Pettitt tests. From 1961 to 2007, the annual trend in suspended sediment concentration and sediment load demonstrated significant reduction (α = 0.001), with decreasing rates of 0.0144 g/L/y and 84.7 t/y, respectively. An abrupt change-point was detected in 1984 for the sediment load (p = 0.0001). The double-mass curve method and regression analysis of sediment load versus precipitation were used to quantify the effects of climate change and human activities on sediment load variations. The changes in sediment load were predominantly impacted by human activities (89%), while precipitation explained 11% of the reduction in suspended sediment. An important land-use change recorded in the Južna Morava river basin comprised the abandonment of agricultural lands due to depopulation processes, as well as economic and social changes, which was followed by significant impacts on soil erosion and sediment transport. Land abandonment was most pronounced in marginal mountain or semi-mountainous areas, where agriculture was until recent decades traditional or semi-traditional. The results of the correlation matrix were significant at the p < 0.05 level, demonstrating that the decrease of rural population, agricultural land, and arable land were directly related to the decline of suspended sediment. High correlation coefficients were found between anthropogenic indicators and sediment parameters, ranging from 0.94 to 0.97.


2021 ◽  
Vol 16 (1) ◽  
pp. 105-122
Author(s):  
Sema Yılmaz Genç ◽  
Arian Behradfar ◽  
Rui Alexandre Castanho ◽  
Derviş Kırıkkaleli ◽  
José Manuel Naranjo Gómez ◽  
...  

Human activities have been changing the Earth's cover at an unparalleled scale. In this regard, and cover mapping is a decisive advantage for several kinds of research. Also, the outcomes from these investigations could be applied to plan a sustainable regional governance policy. This article studied land-use changes in the Turkish Territories in 1990, 2000, 2012, and 2018 using the Coordination of Information on the Environment (CORINE) data. The results showed a significant and gradual land-use change from agricultural to mostly artificial surfaces. The majority of land-use changes are related to industrial and commercial units and construction sites. The most degraded agricultural land uses are non-irrigated arable land and pastures, while there is an increasing trend in permanently irrigated land. This study's outcome can be considered a surveying baseline for the comparative analysis of similar works for different land-use change trends in Europe or worldwide. Landuse change studies are reliable tools to evaluate the human activities and footprint of proposed strategies and policies in a territory. This article also enables us to understand that Turkey's decisive actors should design development policies to encourage industrial investments and agricultural ventures in Turkey and adapt the land-use/land cover strategies to mitigate agricultural land fragmentation.


2015 ◽  
Vol 737 ◽  
pp. 762-765 ◽  
Author(s):  
Yuan Yuan Han ◽  
Tao Cai

To investigate the impacts of land-use patterns on the sediment yield characteristics in the upper Huaihe River, Xixian hydrological controlling station was selected as the case study site. Soil and Water Assessment Tool (SWAT) model was used to simulate land-use change effects on sediment yield by the use of three-phase (1980s, 1990s and 2000s) land-use maps, soil type map (1:200000) and 1987 to 2008 daily time series of rainfall from the upper Huaihe River basin. On the basis of the simulated time series of daily sediment concentration, land-use change effects on spatio-temporal change patterns of soil erosion modulus. The results revealed that under the same condition of soil texture and terrain slope the advantage for sediment yield was descended by woodland, paddy field and farmland. The outputs of the paper could provide references for soil and water conservation and river health protection in the upper stream of Huaihe River.


2021 ◽  
Vol 13 (1) ◽  
pp. 626-638
Author(s):  
Yage Wu ◽  
Guang Yang ◽  
Lijun Tian ◽  
Xinchen Gu ◽  
Xiaolong Li ◽  
...  

Abstract The Manas River Basin (MRB), Northwest China, is an arid basin dependent on irrigation for agriculture, and human activities are believed to be the primary factor affecting the groundwater level fluctuations in this basin. Such fluctuations can have a significant adverse impact on the social economy, agricultural development, and natural environment of that region. This raises concerns regarding the sustainability of groundwater use. In this study, we used ArcGIS spatial interpolation and contrast coefficient variance analysis to analyse groundwater level, land-use change, and water resource consumption patterns from 2012 to 2019 in the plains of the MRB. The aim was to determine the main factors influencing the groundwater level and to provide a scientific basis for the rational development, utilisation, and management of water resources in this area. During the study period, the groundwater level decreased, increased, and then fluctuated with a gradually slowing downward trend; the decline ranged from −17.82 to −11.67 m during 2012–2019. Within a given year, groundwater levels declined from March/April to August/September, then rose from August/September to March/April, within a range of 0.29–19.05 m. Primary factors influencing the groundwater level included human activities (e.g., changes in land use, river regulation, irrigation, and groundwater exploitation) and natural causes (e.g., climate and weather anomalies). Human activities were the primary factors affecting groundwater level, especially land-use change and water resource consumption. These results provide a theoretical basis for the rational exploitation of groundwater and the optimisation of water resource management in this region.


Sign in / Sign up

Export Citation Format

Share Document