scholarly journals Asymmetric impact of groundwater use on groundwater droughts

2020 ◽  
Vol 24 (10) ◽  
pp. 4853-4868
Author(s):  
Doris E. Wendt ◽  
Anne F. Van Loon ◽  
John P. Bloomfield ◽  
David M. Hannah

Abstract. Groundwater use affects groundwater storage continuously as the removal of water changes both short-term and long-term groundwater level variation. This has implications for groundwater droughts, i.e. a below-normal groundwater level. The impact of groundwater use on groundwater droughts, however, remains unknown. Hence, the aim of this study is to investigate the impact of groundwater use on groundwater droughts in the absence of actual abstraction data. We present a methodological framework that consists of two approaches. The first approach compared groundwater droughts at monitoring sites that are potentially influenced by abstraction to groundwater droughts at sites that are known to be near natural. Observed groundwater droughts were compared in terms of drought occurrence, duration, and magnitude. The second approach investigated long-term trends in groundwater levels in all monitoring wells. This framework was applied to a case study of the UK, using four regional water management units in which groundwater levels are monitored and abstractions are licensed. Results show two asymmetric responses in groundwater drought characteristics due to groundwater use. The first response is an increase in shorter drought events and is found in three water management units where long-term annual average groundwater abstractions are smaller than recharge. The second response, observed in one water management unit where groundwater abstractions temporarily exceeded recharge, is a lengthening and intensification of groundwater droughts. Analysis of long-term (1984–2014) trends in groundwater levels shows mixed but generally positive trends, while trends in precipitation and potential evapotranspiration are not significant. The overall rising groundwater levels are consistent with changes in water use regulations and with a general reduction in abstractions during the period of investigation. We summarised our results in a conceptual typology that illustrates the asymmetric impact of groundwater use on groundwater drought occurrence, duration, and magnitude. The long-term balance between groundwater abstraction and recharge plays an important role in this asymmetric impact, which highlights the relation between short-term and long-term sustainable groundwater use.

2020 ◽  
Author(s):  
Doris E. Wendt ◽  
Anne F. Van Loon ◽  
John P. Bloomfield ◽  
David M. Hannah

Abstract. Groundwater use affects groundwater storage continuously, as the removal of water changes both short-term and long-term variation in groundwater level. This has implications for groundwater droughts, i.e. a below-normal groundwater level. The impact of groundwater use on groundwater droughts remains unknown. Hence, the aim of this study is to investigate the impact of groundwater use on groundwater droughts adopting a methodological framework that consists of two approaches. The first approach compares groundwater monitoring sites that are potentially influenced by abstraction to uninfluenced sites. Observed groundwater droughts are compared in terms of drought occurrence, magnitude, and duration. The second approach consists of a groundwater trend test that investigates the impact of groundwater use on long-term groundwater level variation. This framework was applied to a case study of the UK. Four regional water management units in the UK were used, in which groundwater is monitored and abstractions are licensed. The potential influence of groundwater use was identified on the basis of relatively poor correlations between accumulated standardised precipitation and standardised groundwater level time series over a 30-year period from 1984 to 2014. Results of the first approach show two main patterns in groundwater drought characteristics. The first pattern shows an increase of shorter drought events, mostly during heatwaves or prior to a long drought event for influenced sites compared to uninfluenced sites. This pattern is found in three water management units where the long-term water balance is generally positive and annual average groundwater abstractions are smaller than recharge. The second pattern is found in one water management unit where temporarily groundwater abstractions exceeded recharge. In this case, groundwater droughts are lengthened and intensified in influenced sites. Results of the second approach show that nearly half of the groundwater time series have a significant trend, whilst trends in precipitation and potential evapotranspiration time series are negligible. Detected significant trends are both positive en negative, although positive trends dominate in most water management units. These positive trends, indicating rising groundwater levels, align with changes in water use regulation. This suggests that groundwater abstractions have reduced during the period of investigation. Further research is required to assess the impact of this change in groundwater abstractions on drought characteristics. The overall impact of groundwater use is summarised in a conceptual typology that illustrates the asymmetric impact of groundwater use on groundwater drought occurrence, duration, and magnitude. The long-term balance between groundwater abstraction and recharge appears to be influencing this asymmetric impact, which highlights the relation between long-term and short-term sustainable groundwater use.


2020 ◽  
Author(s):  
Chong Chen ◽  
Han Zhou ◽  
Hui Zhang ◽  
Lulu Chen ◽  
Zhu Yan ◽  
...  

Abstract Groundwater resources play a vital role in production, human life and economic development. Effective prediction of groundwater levels would support better water resources management. Although machine learning algorithms have been studied and applied in many domains with good enough results, the researches in hydrologic domains are not adequate. This paper proposes a novel deep learning algorithm for groundwater level prediction based on spatiotemporal attention mechanism. Short-term (one month ahead) and long-term (twelve months ahead) prediction of groundwater level are conducted with observed groundwater levels collected from several boreholes in the middle reaches of the Heihe River Basin in northwestern China. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are used to evaluate the performance of the proposed algorithm and several baseline models (i.e., SVR, Support Vector Regression; FNN, Feedforward Neural Networks; LSTM, Long Short-Term Memory neural network). The results show that the proposed model can effectively improve the prediction accuracy compared to the baseline models with MAE of 0.0754, RMSE of 0.0952 for short-term prediction and MAE of 0.0983, RMSE of 0.1215 for long-term prediction. This study provides a feasible and accurate approach for groundwater prediction which may facilitate decision making for water management.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3107
Author(s):  
Ewa Krogulec ◽  
Jerzy J. Małecki ◽  
Dorota Porowska ◽  
Anna Wojdalska

Monitoring the data of groundwater level in long-term measurement series has allowed for assessment of the impact of natural and anthropogenic factors on groundwater recharge. It allows for assessing the actual groundwater quantity, which constitutes the basis for balanced and sustainable groundwater planning and management in an urban area. Groundwater levels in three aquifers were studied: the shallow and deeper Quaternary aquifers and the Oligocene aquifer in Warsaw (Poland). Statistical analysis was performed on a 27-year (1993–2019) cycle of daily measurements of groundwater levels. The studies focused on determining the range and causes of groundwater level changes in urban-area aquifers. The groundwater table position in the Quaternary aquifer pointed to variable long-term recharge and allowed for the identification of homogenous intervals with identification of water table fluctuation trends. A decrease in the water table was observed within the Quaternary aquifers. The Oligocene aquifer displayed an opposite trend.


Author(s):  
Tim A. H. M. Pelsma ◽  
Anne Marieke Motelica-Wagenaar ◽  
Simon Troost

Abstract. Waternet is the executive agency of the regional water authority Amstel, Gooi and Vecht. Water authority Amstel, Gooi and Vecht manages the water levels (ditches) for 19 400 ha of peat meadows around the Netherlands capital Amsterdam. At present the ditches levels at about 40–60 cm beneath the peat meadow surface, resulting in a groundwater level between from 30 until 80 cm below peat surface and a subsidence of about 9 mm each year. A study was carried out on peat soil subsidence in the Amstel, Gooi and Vecht water authority water management area towards 2100: for short term effects (until 2027), midterm effects (until 2050) and longer term effects (until 2100). This study explores 4 scenarios: (1) present policy (maintain ditch waterlevel at maximum 60 cm below surface); (2) active rewetting, groundwater level at surface; (3) passive rewetting, subsidence is not compensated by lowering of water levels; (4) subsurface irrigation by submerged drains (infiltration in summer, drainage in winter). The scenarios are compared on farming, houses, public infrastructure, greenhouse gases and water management. At present, the total net benefit for farmers are EUR 7 million per year for the whole area, while the costs for the water authority are EUR 37 million per year for managing ditches, dikes and pumps. Costs for greenhouse gases are EUR 18 million (at a price of EUR 40 per ton CO2-eq). Active rewetting would reduce soil subsidence maximally from 2 to 0.5 m towards 2100 but reduces the benefits for farming, whilst the costs for water management stay alike. The costs for greenhouse gases however drops with EUR 3 million per year immediately because CO2-eq emissions drops. Best (financial) results (with respect to all stakeholders) on the long term are booked by passive rewetting with lower costs for water management, houses, public works and greenhouse gases. This scenario will eventually take away the farming possibilities, but not before 2050 and could be too slow to contribute strongly to Paris agreement goals. Best result with respect to climate for short and long term is active rewetting, which will drop the greenhouse gas emissions strongly (equivalent of EUR 2.3 million per year), reduce soil subsidence, but makes farming harder (drop from 7.1 up to EUR 2.5 million per year benefit) and brings no direct reduction of costs for the water authority. Best result on short term for farmers is submerged infiltration drains. However, the effect of this scenario on GHG emission is limited in this study.


Psibernetika ◽  
2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Devina Calista ◽  
Garvin Garvin

<p><em>Child abuse by parents is common in households. The impact of violence on children will bring short-term effects and long-term effects that can be attributed to their various emotional, behavioral and social problems in the future; especially in late adolescence that will enter adulthood. Resilience factors increase the likelihood that adolescents who are victims of childhood violence recover from their past experiences</em><em>,</em><em> become more powerful individuals and have a better life. The purpose of this study was to determine the source of resilience in late adolescents who experienced violence from parents in their childhood. This research uses qualitative research methods with in-depth interviews as a method of data collection. The result shows that the three research participants have the aspects of "I Have", "I Am", and "I Can"; a participant has "I Can" aspects as a source of resilience, and one other subject has no source of resilience. The study concluded that parental affection and acceptance of the past experience have role to the three sources of resilience (I Have, I Am, and I Can)</em></p><p><em> </em></p><p><strong><em>Keyword : </em></strong><em>Resilience, adolescence, violence, parents</em></p>


2021 ◽  
pp. 0160323X2110120
Author(s):  
Hai (David) Guo ◽  
Can Chen

Early in the pandemic, Florida municipal managers indicated that forecasting the impact on local revenues was one of their top priorities in responding to the pandemic, yet such a tool has not been widely available. This study offers simple and straightforward fiscal planning guides for assessing the short-term and long-term impacts of the COVID 19 recession on local government revenues by estimating the revenue declines among 411 Florida municipalities from FY 2021 to FY 2023. The forecast results predict revenues will be reduced by $5.11 billion from 2019 pre-pandemic levels for Florida cities in fiscal years 2021 through 2023. The decline is forecast to be 3.54 percent in FY 2021, 4.02 percent in FY 2022, and 3.29 percent in FY 2023. The revenue structure matters for estimating the revenue decline.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 1019
Author(s):  
Barbara Frączek ◽  
Aleksandra Pięta ◽  
Adrian Burda ◽  
Paulina Mazur-Kurach ◽  
Florentyna Tyrała

The aim of this meta-analysis was to review the impact of a Paleolithic diet (PD) on selected health indicators (body composition, lipid profile, blood pressure, and carbohydrate metabolism) in the short and long term of nutrition intervention in healthy and unhealthy adults. A systematic review of randomized controlled trials of 21 full-text original human studies was conducted. Both the PD and a variety of healthy diets (control diets (CDs)) caused reduction in anthropometric parameters, both in the short and long term. For many indicators, such as weight (body mass (BM)), body mass index (BMI), and waist circumference (WC), impact was stronger and especially found in the short term. All diets caused a decrease in total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG), albeit the impact of PD was stronger. Among long-term studies, only PD cased a decline in TC and LDL-C. Impact on blood pressure was observed mainly in the short term. PD caused a decrease in fasting plasma (fP) glucose, fP insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) and glycated hemoglobin (HbA1c) in the short run, contrary to CD. In the long term, only PD caused a decrease in fP glucose and fP insulin. Lower positive impact of PD on performance was observed in the group without exercise. Positive effects of the PD on health and the lack of experiments among professional athletes require longer-term interventions to determine the effect of the Paleo diet on athletic performance.


Author(s):  
Ali Kamyab ◽  
Steve Andrle ◽  
Dennis Kroeger ◽  
David S. Heyer

Many Minnesota counties are faced with the problem of high vehicle speeds through towns or resort areas that have significant pedestrian traffic. The impact of speed reduction strategies in high-pedestrian areas in rural counties of Minnesota was investigated. Speed data were collected at two selected study sites under their existing conditions ("no-treatment" or "before" condition) and after the proposed speed reduction strategies were installed. Second "after" data conditions were collected to study the short-term and long-term impact of the implemented strategies. The traffic-calming techniques employed at the Twin Lakes site consisted of removable pedestrian islands and pedestrian crossing signs. A dynamic variable message sign that sent a single-word message ("Slow") to motorists traveling over the speed limit was installed at the Bemidji site. The research study shows that the traffic-calming strategy deployed in Twin Lakes was effective in significantly reducing the mean speed and improving speed limit compliance in both the short term and long term. Despite proven effectiveness, the deployed speed reduction treatment in Bemidji Lake failed to lower the speed at the study site. The single-word message on the sign and the location of the sign, as well as a lack of initial enforcement, were the primary reasons for such failure.


2021 ◽  
Author(s):  
Kathryn Powlen ◽  
Kelly W. Jones ◽  
Elva Ivonne Bustamante Moreno ◽  
Maira Abigail Ortíz Cordero ◽  
Jennifer N. Solomon ◽  
...  

Protected areas (PAs) are under immense pressure to safeguard much of the world’s remaining biodiversity and can be strained by unpredicted events such as the COVID-19 pandemic. Understanding the extent of the pandemic on PA inputs, mechanisms, and conservation outcomes is critical for recovery and future planning to buffer against these types of events. We use survey and focus group data to quantify the impact of the pandemic on Mexico’s PA network and outline the pathways that led to conservation outcomes. On average, across 62 PAs, we find substantial changes in management capacity, monitoring, and tourism, and a slight increase in non-compliant activities. Our findings highlight the need to increase short-term relief efforts and long-term livelihood diversification initiatives for communities dependent on tourism, who were most vulnerable during the pandemic. Increased management support, including technical capacity and financial resources, could also better sustain management activities in future shocks.


Sign in / Sign up

Export Citation Format

Share Document