scholarly journals Snowpack dynamics in the Lebanese mountains from quasi-dynamically downscaled ERA5 reanalysis updated by assimilating remotely sensed fractional snow-covered area

2021 ◽  
Vol 25 (8) ◽  
pp. 4455-4471
Author(s):  
Esteban Alonso-González ◽  
Ethan Gutmann ◽  
Kristoffer Aalstad ◽  
Abbas Fayad ◽  
Marine Bouchet ◽  
...  

Abstract. The snowpack over the Mediterranean mountains constitutes a key water resource for the downstream populations. However, its dynamics have not been studied in detail yet in many areas, mostly because of the scarcity of snowpack observations. In this work, we present a characterization of the snowpack over the two mountain ranges of Lebanon. To obtain the necessary snowpack information, we have developed a 1 km regional-scale snow reanalysis (ICAR_assim) covering the period 2010–2017. ICAR_assim was developed by means of an ensemble-based data assimilation of Moderate Resolution Imaging Spectroradiometer (MODIS) fractional snow-covered area (fSCA) through an energy and mass snow balance model, the Flexible Snow Model (FSM2), using the particle batch smoother (PBS). The meteorological forcing data were obtained by a regional atmospheric simulation from the Intermediate Complexity Atmospheric Research model (ICAR) nested inside a coarser regional simulation from the Weather Research and Forecasting model (WRF). The boundary and initial conditions of WRF were provided by the ERA5 atmospheric reanalysis. ICAR_assim showed very good agreement with MODIS gap-filled snow products, with a spatial correlation of R=0.98 in the snow probability (P(snow)) and a temporal correlation of R=0.88 on the day of peak snow water equivalent (SWE). Similarly, ICAR_assim has shown a correlation with the seasonal mean SWE of R=0.75 compared with in situ observations from automatic weather stations (AWSs). The results highlight the high temporal variability in the snowpack in the Lebanese mountain ranges, with the differences between Mount Lebanon and the Anti-Lebanon Mountains that cannot only be explained by hypsography as the Anti-Lebanon Mountains are in the rain shadow of Mount Lebanon. The maximum fresh water stored in the snowpack is in the middle elevations, approximately between 2200 and 2500 m a.s.l. (above sea level). Thus, the resilience to further warming is low for the snow water resources of Lebanon due to the proximity of the snowpack to the zero isotherm.

2020 ◽  
Author(s):  
Esteban Alonso-González ◽  
Ethan Gutmann ◽  
Kristoffer Aalstad ◽  
Abbas Fayad ◽  
Simon Gascoin

Abstract. The snowpack over the Mediterranean mountains constitutes a key water resource for the downstream populations. However, its dynamics have not been studied in detail yet in many areas, mostly because of the scarcity of snowpack observations. In this work, we present a characterization of the snowpack over the two mountain ranges of Lebanon. To obtain the necessary snowpack information, we have developed a 1 km regional scale snow reanalysis (ICAR_assim) covering the period 2010–2017. ICAR_assim was developed by means of ensemble-based data assimilation of MODIS fractional snow-covered area (fSCA) through the energy and mass balance model the Flexible Snow Model (FSM2), using the Particle Batch Smoother (PBS). The meteorological forcing data was obtained by a regional atmospheric simulation developed through the Intermediate Complexity Atmospheric Research model (ICAR) nested inside a coarser regional simulation developed by the Weather Research and Forecasting model (WRF). The boundary and initial conditions of WRF were provided by the ERA5 atmospheric reanalysis. ICAR_assim showed very good agreement with MODIS gap-filled snow products, with a spatial correlation of R = 0.98 in the snow probability (P(snow)), and a temporal correlation of R = 0.88 in the day of peak snow water equivalent (SWE)Similarly, ICAR_assim has shown a correlation with the seasonal mean SWE of R = 0.75 compared with in-situ observations from Automatic Weather Stations (AWS). The results highlight the high temporal variability of the snowpack in the Lebanon ranges, with differences between Mount Lebanon and Anti-Lebanon that cannot be only explained by its hypsography been Anti-Lebanon in the rain shadow of Mount Lebanon. The maximum fresh water stored in the snowpack is in the middle elevations approximately between 2200 and 2500 m. a.s.l. Thus, the resilience to further warming is low for the snow water resources of Lebanon due to the proximity of the snowpack to the zero isotherm.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 890
Author(s):  
Mohamed Wassim Baba ◽  
Abdelghani Boudhar ◽  
Simon Gascoin ◽  
Lahoucine Hanich ◽  
Ahmed Marchane ◽  
...  

Melt water runoff from seasonal snow in the High Atlas range is an essential water resource in Morocco. However, there are only few meteorological stations in the high elevation areas and therefore it is challenging to estimate the distribution of snow water equivalent (SWE) based only on in situ measurements. In this work we assessed the performance of ERA5 and MERRA-2 climate reanalysis to compute the spatial distribution of SWE in the High Atlas. We forced a distributed snowpack evolution model (SnowModel) with downscaled ERA5 and MERRA-2 data at 200 m spatial resolution. The model was run over the period 1981 to 2019 (37 water years). Model outputs were assessed using observations of river discharge, snow height and MODIS snow-covered area. The results show a good performance for both MERRA-2 and ERA5 in terms of reproducing the snowpack state for the majority of water years, with a lower bias using ERA5 forcing.


1987 ◽  
Vol 9 ◽  
pp. 39-44 ◽  
Author(s):  
A.T.C. Chang ◽  
J.L. Foster ◽  
D.K. Hall

Snow covers about 40 million km2of the land area of the Northern Hemisphere during the winter season. The accumulation and depletion of snow is dynamically coupled with global hydrological and climatological processes. Snow covered area and snow water equivalent are two essential measurements. Snow cover maps are produced routinely by the National Environmental Satellite Data and Information Service of the National Oceanic and Atmospheric Administration (NOAA/NESDIS) and by the US Air Force Global Weather Center (USAFGWC). The snow covered area reported by these two groups sometimes differs by several million km2, Preliminary analysis is performed to evaluate the accuracy of these products.Microwave radiation penetrating through clouds and snowpacks could provide depth and water equivalent information about snow fields. Based on theoretical calculations, snow covered area and snow water equivalent retrieval algorithms have been developed. Snow cover maps for the Northern Hemisphere have been derived from Nimbus-7 SMMR data for a period of six years (1978–1984). Intercomparisons of SMMR, NOAA/NESDIS and USAFGWC snow maps have been conducted to evaluate and assess the accuracy of SMMR derived snow maps. The total snow covered area derived from SMMR is usually about 10% less than the other two products. This is because passive microwave sensors cannot detect shallow, dry snow which is less than 5 cm in depth. The major geographic regions in which the differences among these three products are the greatest are in central Asia and western China. Future study is required to determine the absolute accuracy of each product.Preliminary snow water equivalent maps have also been produced. Comparisons are made between retrieved snow water equivalent over large area and available snow depth measurements. The results of the comparisons are good for uniform snow covered areas, such as the Canadian high plains and the Russian steppes. Heavily forested and mountainous areas tend to mask out the microwave snow signatures and thus comparisons with measured water equivalent are poorer in those areas.


1987 ◽  
Vol 9 ◽  
pp. 39-44 ◽  
Author(s):  
A.T.C. Chang ◽  
J.L. Foster ◽  
D.K. Hall

Snow covers about 40 million km2 of the land area of the Northern Hemisphere during the winter season. The accumulation and depletion of snow is dynamically coupled with global hydrological and climatological processes. Snow covered area and snow water equivalent are two essential measurements. Snow cover maps are produced routinely by the National Environmental Satellite Data and Information Service of the National Oceanic and Atmospheric Administration (NOAA/NESDIS) and by the US Air Force Global Weather Center (USAFGWC). The snow covered area reported by these two groups sometimes differs by several million km2, Preliminary analysis is performed to evaluate the accuracy of these products.Microwave radiation penetrating through clouds and snowpacks could provide depth and water equivalent information about snow fields. Based on theoretical calculations, snow covered area and snow water equivalent retrieval algorithms have been developed. Snow cover maps for the Northern Hemisphere have been derived from Nimbus-7 SMMR data for a period of six years (1978–1984). Intercomparisons of SMMR, NOAA/NESDIS and USAFGWC snow maps have been conducted to evaluate and assess the accuracy of SMMR derived snow maps. The total snow covered area derived from SMMR is usually about 10% less than the other two products. This is because passive microwave sensors cannot detect shallow, dry snow which is less than 5 cm in depth. The major geographic regions in which the differences among these three products are the greatest are in central Asia and western China. Future study is required to determine the absolute accuracy of each product.Preliminary snow water equivalent maps have also been produced. Comparisons are made between retrieved snow water equivalent over large area and available snow depth measurements. The results of the comparisons are good for uniform snow covered areas, such as the Canadian high plains and the Russian steppes. Heavily forested and mountainous areas tend to mask out the microwave snow signatures and thus comparisons with measured water equivalent are poorer in those areas.


2013 ◽  
Vol 54 (62) ◽  
pp. 305-313 ◽  
Author(s):  
T. Skaugen ◽  
F. Randen

AbstractA good estimate of the spatial probability density function (PDF) of snow water equivalent (SWE) provides the mean of the snow reservoir, but also enables modelling of the changes in snow-covered area (SCA), which is crucial for the runoff dynamics in spring. The spatial PDF of accumulated SWE is here modelled as a sum of correlated gamma-distributed variables, called units. The spatial variance of accumulated SWE is evaluated by the covariance matrix of the units. For accumulation events, there are only positive elements in the covariance matrix, whereas for melting events there are both positive and negative elements. The negative elements dictate that the correlation between melt and SWE is negative. After accumulation and melting events, the changes in the spatial moments are weighted by changes in SCA. Results from the model are in good agreement with observed spatial moments of SWE and SCA and found to provide better estimates of the spatial variability than the current model for snow distribution used in the Norwegian version of the Swedish rainfall–runoff model HBV. The parameters in the distribution model are estimated from observed historical precipitation, so no calibration parameters are introduced.


2009 ◽  
Vol 10 (1) ◽  
pp. 130-148 ◽  
Author(s):  
Benjamin F. Zaitchik ◽  
Matthew Rodell

Abstract Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow-covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation—SCA indicates only the presence or absence of snow, not snow water equivalent—and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to nonphysical artifacts in the local water balance. In this paper, a novel assimilation algorithm is presented that introduces Moderate Resolution Imaging Spectroradiometer (MODIS) SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm uses observations from up to 72 h ahead of the model simulation to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes during the snow season and, in some regions, on into the following spring.


Author(s):  
Irene Garousi-Nejad ◽  
David Tarboton

This study compares the U.S. National Water Model (NWM) reanalysis snow outputs to observed snow water equivalent (SWE) and snow-covered area fraction (SCAF) at SNOTEL sites across the Western U.S. This was done to evaluate and identify opportunities for improving the modeling of snow in the NWM. SWE was obtained from SNOTEL sites, while SCAF was obtained from MODIS observations at a nominal 500 m grid scale. Retrospective NWM results were at a 1000 m grid scale. We compared results for SNOTEL sites to gridded NWM and MODIS outputs for the grid cells encompassing each SNOTEL site. Differences between modeled and observed SWE were attributed to both model errors, as well as errors in inputs, notably precipitation and temperature. The NWM generally under-predicted SWE, partly due to precipitation input differences. There was also a slight general bias for model input temperature to be cooler than observed, counter to the direction expected to lead to under-modeling of SWE. There was also under-modeling of SWE for a subset of sites where precipitation inputs were good. Furthermore, the NWM generally tends to melt snow early. There was considerable variability between modeled and observed SCAF that hampered useful interpretation of these comparisons. This is in part due to the model grid SCAF essentially being binary (snow or no snow) while observations from MODIS are much more fractional. However, when SCAF was aggregated across all sites and years, modeled SCAF tended to be more than observed using MODIS. These differences are regional with generally better SWE and SCAF results in the Central Basin and Range and differences tending to become larger the further away regions are from this region. These findings identify areas where predictions from the NWM involving snow may be better or worse, and suggest opportunities for research directed towards model improvements.


2019 ◽  
Vol 20 (4) ◽  
pp. 577-594 ◽  
Author(s):  
Philippe Cantet ◽  
M. A. Boucher ◽  
S. Lachance-Coutier ◽  
R. Turcotte ◽  
V. Fortin

Abstract A snow model forced by temperature and precipitation is used to simulate the spatial distribution of snow water equivalent (SWE) over a 600 000 km2 portion of the province of Quebec, Canada. We propose to improve model simulations by assimilating SWE data from sporadic manual snow surveys with a particle filter. A temporally and spatially correlated perturbation of the meteorological forcing is used to generate the set of particles. The magnitude of the perturbations is fixed objectively. First, the particle filter and direct insertion were both applied on 88 sites for which measured SWE consisted of more or less five values per year over a period of 17 years. The temporal correlation of perturbations enables us to improve the accuracy and the ensemble dispersion of the particle filter, while the spatial correlation leads to a spatial coherence in the particle weights. The spatial estimates of SWE obtained with the particle filter are compared with those obtained through optimal interpolation of the snow survey data, which is the current operational practice in Quebec. Cross-validation results as well as validation against an independent dataset show that the proposed particle filter enables us to improve the spatial distribution of the snow water equivalent compared with optimal interpolation.


2016 ◽  
Vol 17 (4) ◽  
pp. 1203-1221 ◽  
Author(s):  
Steven A. Margulis ◽  
Gonzalo Cortés ◽  
Manuela Girotto ◽  
Michael Durand

Abstract A newly developed state-of-the-art snow water equivalent (SWE) reanalysis dataset over the Sierra Nevada (United States) based on the assimilation of remotely sensed fractional snow-covered area data over the Landsat 5–8 record (1985–2015) is presented. The method (fully Bayesian), resolution (daily and 90 m), temporal extent (31 years), and accuracy provide a unique dataset for investigating snow processes. The verified dataset (based on a comparison with over 9000 station years of in situ data) exhibited mean and root-mean-square errors less than 3 and 13 cm, respectively, and correlation greater than 0.95 compared with in situ SWE observations. The reanalysis dataset was used to characterize the peak SWE climatology to provide a basic accounting of the stored snowpack water in the Sierra Nevada over the last 31 years. The pixel-wise peak SWE volume over the domain was found to be 20.0 km3 on average with a range of 4.0–40.6 km3. The ongoing drought in California contains the two lowest snowpack years (water years 2014 and 2015) and three of the four driest years over the examined record. It was found that the basin-average peak SWE, while underestimating the total water storage in snowpack over the year, accurately captures the interannual variability in stored snowpack water. However, the results showed that the assumption that 1 April SWE is representative of the peak SWE can lead to significant underestimation of basin-average peak SWE both on an average (21% across all basins) and on an interannual basis (up to 98% across all basin years).


1993 ◽  
Vol 18 ◽  
pp. 179-184
Author(s):  
Tsutomu Nakamura ◽  
Osamu Abe

The average amounts of seasonal snow cover and snowfall in Japan were calculated as 7.9 × 1013kg and 1.2 × 1014kg, respectively. The mass of seasonal snow cover of a heavy-snowfall winter, 1980–81 (56-Gosetsu), was calculated as 1.3 × 1014kg. The amount of 7.9 × 1013kg was converted to water equivalent of 230 mm on the whole snow-covered area, including snow-prone area. A mean of 370 mm in snow water equivalent was calculated for the snow area where mean snow depth on the ground was more than 10 cm.


Sign in / Sign up

Export Citation Format

Share Document