scholarly journals Climate change and wetland loss impacts on a Western river's water quality

2014 ◽  
Vol 11 (5) ◽  
pp. 4925-4969
Author(s):  
R. M. Records ◽  
M. Arabi ◽  
S. R. Fassnacht ◽  
W. G. Duffy ◽  
M. Ahmadi ◽  
...  

Abstract. An understanding of potential stream water quality conditions under future climate is critical for the sustainability of ecosystems and protection of human health. Changes in wetland water balance under projected climate could alter wetland extent or cause wetland loss. This study assessed the potential climate-induced changes to in-stream sediment and nutrients loads in the historically snow melt-dominated Sprague River, Oregon, Western United States. Additionally, potential water quality impacts of combined changes in wetland water balance and wetland area under future climatic conditions were evaluated. The study utilized the Soil and Water Assessment Tool (SWAT) forced with statistical downscaling of general circulation model (GCM) data from the Coupled Model Intercomparison Project 5 (CMIP5) using the Multivariate Adaptive Constructed Analogs (MACA) method. Our findings suggest that in the Sprague River (1) mid-21st century nutrient and sediment loads could increase significantly during the high flow season under warmer-wetter climate projections, or could change only nominally in a warmer and somewhat drier future; (2) although water quality conditions under some future climate scenarios and no wetland loss may be similar to the past, the combined impact of climate change and wetland losses on nutrient loads could be large; (3) increases in stream total phosphorus (TP) concentration with wetland loss under future climate scenarios would be greatest at high-magnitude, low-probability flows; and (4) loss of riparian wetlands in both headwaters and lowlands could increase outlet TP loads to a similar degree, but this could be due to distinctly different mechanisms in different parts of the watershed.

2014 ◽  
Vol 18 (11) ◽  
pp. 4509-4527 ◽  
Author(s):  
R. M. Records ◽  
M. Arabi ◽  
S. R. Fassnacht ◽  
W. G. Duffy ◽  
M. Ahmadi ◽  
...  

Abstract. An understanding of potential stream water quality conditions under future climate is critical for the sustainability of ecosystems and the protection of human health. Changes in wetland water balance under projected climate could alter wetland extent or cause wetland loss (e.g., via increased evapotranspiration and lower growing season flows leading to reduced riparian wetland inundation) or altered land use patterns. This study assessed the potential climate-induced changes to in-stream sediment and nutrient loads in the snowmelt-dominated Sprague River, Oregon, western US. Additionally, potential water quality impacts of combined changes in wetland water balance and wetland area under future climatic conditions were evaluated. The study utilized the Soil and Water Assessment Tool (SWAT) forced with statistical downscaling of general circulation model (GCM) data from the Coupled Model Intercomparison Project 5 (CMIP5) using the Multivariate Adaptive Constructed Analogs (MACA) method. Our findings suggest that, in the Sprague River, (1) mid-21st century nutrient and sediment loads could increase significantly during the high-flow season under warmer, wetter climate projections or could change only nominally in a warmer and somewhat drier future; (2) although water quality conditions under some future climate scenarios and no wetland loss may be similar to the past, the combined impact of climate change and wetland losses on nutrient loads could be large; (3) increases in stream total phosphorus (TP) concentration with wetland loss under future climate scenarios would be greatest at high-magnitude, low-probability flows; and (4) loss of riparian wetlands in both headwaters and lowlands could increase outlet TP loads to a similar degree, but this could be due to distinctly different mechanisms in different parts of the watershed.


Climate ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 165
Author(s):  
Prem B. Parajuli ◽  
Avay Risal

This study evaluated changes in climatic variable impacts on hydrology and water quality in Big Sunflower River Watershed (BSRW), Mississippi. Site-specific future time-series precipitation, temperature, and solar radiation data were generated using a stochastic weather generator LARS-WG model. For the generation of climate scenarios, Representative Concentration Pathways (RCPs), 4.5 and 8.5 of Global Circulation Models (GCMs): Hadley Center Global Environmental Model (HadGEM) and EC-EARTH, for three (2021–2040, 2041–2060 and 2061–2080) future climate periods. Analysis of future climate data based on six ground weather stations located within BSRW showed that the minimum temperature ranged from 11.9 °C to 15.9 °C and the maximum temperature ranged from 23.2 °C to 28.3 °C. Similarly, the average daily rainfall ranged from 3.6 mm to 4.3 mm. Analysis of changes in monthly average maximum/minimum temperature showed that January had the maximum increment and July/August had a minimum increment in monthly average temperature. Similarly, maximum increase in monthly average rainfall was observed during May and maximum decrease was observed during September. The average monthly streamflow, sediment, TN, and TP loads under different climate scenarios varied significantly. The change in average TN and TP loads due to climate change were observed to be very high compared to the change in streamflow and sediment load. The monthly average nutrient load under two different RCP scenarios varied greatly from as low as 63% to as high as 184%, compared to the current monthly nutrient load. The change in hydrology and water quality was mainly attributed to changes in surface temperature, precipitation, and stream flow. This study can be useful in the development and implementation of climate change smart management of agricultural watersheds.


2021 ◽  
Vol 43 ◽  
pp. e56026
Author(s):  
Gabriela Leite Neves ◽  
Jorim Sousa das Virgens Filho ◽  
Maysa de Lima Leite ◽  
Frederico Fabio Mauad

Water is an essential natural resource that is being impacted by climate change. Thus, knowledge of future water availability conditions around the globe becomes necessary. Based on that, this study aimed to simulate future climate scenarios and evaluate the impact on water balance in southern Brazil. Daily data of rainfall and air temperature (maximum and minimum) were used. The meteorological data were collected in 28 locations over 30 years (1980-2009). For the data simulation, we used the climate data stochastic generator PGECLIMA_R. It was considered two scenarios of the fifth report of the Intergovernmental Panel on Climate Change (IPCC) and a scenario with the historical data trend. The water balance estimates were performed for the current data and the simulated data, through the methodology of Thornthwaite and Mather (1955). The moisture indexes were spatialized by the kriging method. These indexes were chosen as the parameters to represent the water conditions in different situations. The region assessed presented a high variability in water availability among locations; however, it did not present high water deficiency values, even with climate change. Overall, it was observed a reduction of moisture index in most sites and in all scenarios assessed, especially in the northern region when compared to the other regions. The second scenario of the IPCC (the worst situation) promoting higher reductions and dry conditions for the 2099 year. The impacts of climate change on water availability, identified in this study, can affect the general society, therefore, they must be considered in the planning and management of water resources, especially in the regional context


2022 ◽  
Author(s):  
Rana Salim Abou Slaymane ◽  
M. Reda Soliman

Abstract The impacts of the growing population at Lebanon including Lebanese, Palestinian and Syrian refugees, associated with the changing climate parameters such that the precipitation are putting the Bekaa Valley’s water resources in a stymie situation. The water resources are under significant stress limiting the water availability and deteriorating the water quality at the Upper Litani River Basin (ULRB) within the Bekaa Valley region. These impacts are assessed by Water Evaluation And Planning model to assure the water balance and quality at baseline scenario in 2013, and future scenarios reaching 2095, serving by the Watershed Modeling System to get the flow throughout the Litani River’s ungauged zones. Moreover, a General Circulation Model is used to predict the future climate up to 2100 under several emissions scenarios which shows a critical situation at the high emission scenario where the precipitation will be reduced about 87 mm from 2013 to 2095. The aim of this research is to reduce the water pollution that limits the availability of usable water, and to minimize the gap between the demand and supply of water within the ULRB in order to maintain water resources sustainability, and preserves its quality, even after 80 years. In particular, this may be achieved by removing encroachments on the river, by adding waste water treatment plants, by reducing the amount of lost water in damaged water network, and by avoiding the overconsumption of groundwater.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 286
Author(s):  
Bangshuai Han ◽  
Shawn G. Benner ◽  
Alejandro N. Flores

:In intensively managed watersheds, water scarcity is a product of interactions between complex biophysical processes and human activities. Understanding how intensively managed watersheds respond to climate change requires modeling these coupled processes. One challenge in assessing the response of these watersheds to climate change lies in adequately capturing the trends and variability of future climates. Here we combine a stochastic weather generator together with future projections of climate change to efficiently create a large ensemble of daily weather for three climate scenarios, reflecting recent past and two future climate scenarios. With a previously developed model that captures rainfall-runoff processes and the redistribution of water according to declared water rights, we use these large ensembles to evaluate how future climate change may impact satisfied and unsatisfied irrigation throughout the study area, the Treasure Valley in Southwest Idaho, USA. The numerical experiments quantify the changing rate of allocated and unsatisfied irrigation amount and reveal that the projected temperature increase more significantly influences allocated and unsatisfied irrigation amounts than precipitation changes. The scenarios identify spatially distinct regions in the study area that are at greater risk of the occurrence of unsatisfied irrigation. This study demonstrates how combining stochastic weather generators and future climate projections can support efforts to assess future risks of negative water resource outcomes. It also allows identification of regions in the study area that may be less suitable for irrigated agriculture in future decades, potentially benefiting planners and managers.


2021 ◽  
Vol 13 (18) ◽  
pp. 10102
Author(s):  
Jian Sha ◽  
Xue Li ◽  
Jingjing Yang

The impacts of future climate changes on watershed hydrochemical processes were assessed based on the newest Shared Socioeconomic Pathways (SSP) scenarios in Coupled Model Intercomparison Project Phase 6 (CMIP6) in the Tianhe River in the middle area of China. The monthly spatial downscaled outputs of General Circulation Models (GCMs) were used, and a new Python procedure was developed to batch pick up site-scale climate change information. A combined modeling approach was proposed to estimate the responses of the streamflow and Total Dissolved Nitrogen (TDN) fluxes to four climate change scenarios during four future periods. The Long Ashton Research Station Weather Generator (LARS-WG) was used to generate synthetic daily weather series, which were further used in the Regional Nutrient Management (ReNuMa) model for scenario analyses of watershed hydrochemical process responses. The results showed that there would be 2–3% decreases in annual streamflow by the end of this century for most scenarios except SSP 1-26. More streamflow is expected in the summer months, responding to most climate change scenarios. The annual TDN fluxes would continue to increase in the future under the uncontrolled climate scenarios, with more non-point source contributions during the high-flow periods in the summer. The intensities of the TDN flux increasing under the emission-controlled climate scenarios would be relatively moderate, with a turning point around the 2070s, indicating that positive climate policies could be effective for mitigating the impacts of future climate changes on watershed hydrochemical processes.


2021 ◽  
Author(s):  
Richard Fewster ◽  
Paul Morris ◽  
Ruza Ivanovic ◽  
Graeme Swindles ◽  
Anna Peregon ◽  
...  

<p>Northern permafrost peatlands represent one of Earth’s largest terrestrial carbon stores and are highly sensitive to climate change. Whilst frozen, peatland carbon fluxes are restricted by cold temperatures, but once permafrost thaws and saturated surficial conditions develop, emissions of carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) substantially increase. This positive feedback mechanism threatens to accelerate future climate change globally. Whilst future permafrost distributions in mineral soils have been modelled extensively, the insulating properties of organic soils mean that peatland permafrost responses are highly uncertain. Peatland permafrost is commonly evidenced by frost mounds, termed palsas/peat plateaus, or by polygonal patterning in more northerly regions. Although the distribution of palsas in northern Fennoscandia is well-studied, the extent of palsas/peat plateaus and polygon mires elsewhere remains poorly constrained, which currently restricts predictions of their future persistence under climate change.  </p><p>Here, we present the first pan-Arctic analyses of the modern climate envelopes and future distributions of permafrost peatland landforms in North America, Fennoscandia, and Western Siberia. We relate a novel hemispheric-scale catalogue of palsas/peat plateaus and polygon mires (>2,100<strong> </strong>individual sites) to modern climate data using one-vs-all (OVA) binary logistic regression. We predict future distributions of permafrost peatland landforms across the northern hemisphere under four Shared Socioeconomic Pathway (SSP) scenarios, using future climate projections from an ensemble of 12 general circulation models included in the Coupled Model Intercomparison Project 6 (CMIP6). We then combine our simulations with recent soil organic carbon maps to estimate how northern peatland carbon stocks may be affected by future permafrost redistribution. These novel analyses will improve our understanding of future peatland trajectories across the northern hemisphere and assist predictions of climate feedbacks resulting from peatland permafrost thaw. </p>


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Rui Ito ◽  
Tosiyuki Nakaegawa ◽  
Izuru Takayabu

AbstractEnsembles of climate change projections created by general circulation models (GCMs) with high resolution are increasingly needed to develop adaptation strategies for regional climate change. The Meteorological Research Institute atmospheric GCM version 3.2 (MRI-AGCM3.2), which is listed in the Coupled Model Intercomparison Project phase 5 (CMIP5), has been typically run with resolutions of 60 km and 20 km. Ensembles of MRI-AGCM3.2 consist of members with multiple cumulus convection schemes and different patterns of future sea surface temperature, and are utilized together with their downscaled data; however, the limited size of the high-resolution ensemble may lead to undesirable biases and uncertainty in future climate projections that will limit its appropriateness and effectiveness for studies on climate change and impact assessments. In this study, to develop a comprehensive understanding of the regional precipitation simulated with MRI-AGCM3.2, we investigate how well MRI-AGCM3.2 simulates the present-day regional precipitation around the globe and compare the uncertainty in future precipitation changes and the change projection itself between MRI-AGCM3.2 and the CMIP5 multiple atmosphere–ocean coupled GCM (AOGCM) ensemble. MRI-AGCM3.2 reduces the bias of the regional mean precipitation obtained with the high-performing CMIP5 models, with a reduction of approximately 20% in the bias over the Tibetan Plateau through East Asia and Australia. When 26 global land regions are considered, MRI-AGCM3.2 simulates the spatial pattern and the regional mean realistically in more regions than the individual CMIP5 models. As for the future projections, in 20 of the 26 regions, the sign of annual precipitation change is identical between the 50th percentiles of the MRI-AGCM3.2 ensemble and the CMIP5 multi-model ensemble. In the other six regions around the tropical South Pacific, the differences in modeling with and without atmosphere–ocean coupling may affect the projections. The uncertainty in future changes in annual precipitation from MRI-AGCM3.2 partially overlaps the maximum–minimum uncertainty range from the full ensemble of the CMIP5 models in all regions. Moreover, on average over individual regions, the projections from MRI-AGCM3.2 spread over roughly 0.8 of the uncertainty range from the high-performing CMIP5 models compared to 0.4 of the range of the full ensemble.


Sign in / Sign up

Export Citation Format

Share Document