scholarly journals Assimilation of near-surface cosmic-ray neutrons improves summertime soil moisture profile estimates at three distinct biomes in the USA

2014 ◽  
Vol 11 (5) ◽  
pp. 5515-5558 ◽  
Author(s):  
R. Rosolem ◽  
T. Hoar ◽  
A. Arellano ◽  
J. L. Anderson ◽  
W. J. Shuttleworth ◽  
...  

Abstract. Aboveground cosmic-ray neutron measurements provide an opportunity to infer soil moisture at the sub-kilometer scale. Initial efforts to assimilate those measurements have shown promise. This study expands such analysis by investigating (1) how the information from aboveground cosmic-ray neutrons can constrain the soil moisture at distinct depths simulated by a land surface model, and (2) how changes in data availability (in terms of retrieval frequency) impact the dynamics of simulated soil moisture profiles. We employ ensemble data assimilation techniques in a "nearly-identical twin" experiment applied at semi-arid shrubland, rainfed agricultural field, and mixed forest biomes in the USA The performance of the Noah land surface model is compared without and with assimilation of observations at hourly intervals and every 2 days Synthetic observations of aboveground cosmic-ray neutrons better constrain the soil moisture simulated by Noah in root zone soil layers (0–100 cm) despite the limited measurement depth of the sensor (estimated to be 12–20 cm). The ability of Noah to reproduce a "true" soil moisture profile is remarkably good regardless of the frequency of observations at the semi-arid site. However, soil moisture profiles are better constrained when assimilating synthetic cosmic-ray neutrons observations hourly rather than every 2 days at the cropland and mixed forest sites. This indicates potential benefits for hydrometeorological modeling when soil moisture measurements are available at relatively high frequency. Moreover, differences in summertime meteorological forcing between the semi-arid site and the other two sites may indicate a possible controlling factor to soil moisture dynamics in addition to differences in soil and vegetation properties.

2014 ◽  
Vol 18 (11) ◽  
pp. 4363-4379 ◽  
Author(s):  
R. Rosolem ◽  
T. Hoar ◽  
A. Arellano ◽  
J. L. Anderson ◽  
W. J. Shuttleworth ◽  
...  

Abstract. Above-ground cosmic-ray neutron measurements provide an opportunity to infer soil moisture at the sub-kilometer scale. Initial efforts to assimilate those measurements have shown promise. This study expands such analysis by investigating (1) how the information from aboveground cosmic-ray neutrons can constrain the soil moisture at distinct depths simulated by a land surface model, and (2) how changes in data availability (in terms of retrieval frequency) impact the dynamics of simulated soil moisture profiles. We employ ensemble data assimilation techniques in a "nearly-identical twin" experiment applied at semi-arid shrubland, rainfed agricultural field, and mixed forest biomes in the USA. The performance of the Noah land surface model is compared with and without assimilation of observations at hourly intervals, as well as every 2 days. Synthetic observations of aboveground cosmic-ray neutrons better constrain the soil moisture simulated by Noah in root-zone soil layers (0–100cm), despite the limited measurement depth of the sensor (estimated to be 12–20cm). The ability of Noah to reproduce a "true" soil moisture profile is remarkably good, regardless of the frequency of observations at the semi-arid site. However, soil moisture profiles are better constrained when assimilating synthetic cosmic-ray neutron observations hourly rather than every 2 days at the cropland and mixed forest sites. This indicates potential benefits for hydrometeorological modeling when soil moisture measurements are available at a relatively high frequency. Moreover, differences in summertime meteorological forcing between the semi-arid site and the other two sites may indicate a possible controlling factor to soil moisture dynamics in addition to differences in soil and vegetation properties.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1362 ◽  
Author(s):  
Mustafa Berk Duygu ◽  
Zuhal Akyürek

Soil moisture content is one of the most important parameters of hydrological studies. Cosmic-ray neutron sensing is a promising proximal soil moisture sensing technique at intermediate scale and high temporal resolution. In this study, we validate satellite soil moisture products for the period of March 2015 and December 2018 by using several existing Cosmic Ray Neutron Probe (CRNP) stations of the COSMOS database and a CRNP station that was installed in the south part of Turkey in October 2016. Soil moisture values, which were inferred from the CRNP station in Turkey, are also validated using a time domain reflectometer (TDR) installed at the same location and soil water content values obtained from a land surface model (Noah LSM) at various depths (0.1 m, 0.3 m, 0.6 m and 1.0 m). The CRNP has a very good correlation with TDR where both measurements show consistent changes in soil moisture due to storm events. Satellite soil moisture products obtained from the Soil Moisture and Ocean Salinity (SMOS), the METOP-A/B Advanced Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), Advanced Microwave Scanning Radiometer 2 (AMSR2), Climate Change Initiative (CCI) and a global land surface model Global Land Data Assimilation System (GLDAS) are compared with the soil moisture values obtained from CRNP stations. Coefficient of determination ( r 2 ) and unbiased root mean square error (ubRMSE) are used as the statistical measures. Triple Collocation (TC) was also performed by considering soil moisture values obtained from different soil moisture products and the CRNPs. The validation results are mainly influenced by the location of the sensor and the soil moisture retrieval algorithm of satellite products. The SMAP surface product produces the highest correlations and lowest errors especially in semi-arid areas whereas the ASCAT product provides better results in vegetated areas. Both global and local land surface models’ outputs are highly compatible with the CRNP soil moisture values.


2020 ◽  
Author(s):  
Elizabeth Cooper ◽  
Ewan Pinnington ◽  
Richard Ellis ◽  
Eleanor Blyth ◽  
Simon Dadson ◽  
...  

<p>Soil moisture predictions are increasingly important in hydrological, ecological and agricultural applications. In recent years the availability of wide-area assessments of current and future soil-moisture states has grown, yet few studies have combined model-based assessments with observations beyond the point scale. Here we use the JULES land surface model together with COSMOS-UK data to evaluate the extent to which data assimilation can improve predictions of soil moisture across the United Kingdom.</p><p>COSMOS-UK is a network of soil moisture sensors run by UKCEH. The network provides soil moisture measurements at around 50 sites throughout the UK using innovative Cosmic Ray Neutron Sensors (CRNS). Half hourly measurements of the meteorological variables that the Joint UK Land Environment Simulator (JULES) requires as driving data are also recorded at COSMOS-UK sites, allowing us to run JULES at observation locations. This provides a unique opportunity to compare soil moisture outputs from JULES with CRNS observations; these measurements have a footprint of up to 12 ha (approx 30 acres) and are therefore better scale matched with JULES outputs than those from point sensors.</p><p>We have used the Land Variational Ensemble Data Assimilation Framework (LaVEnDAR) to combine soil moisture estimates from JULES with daily CRNS observations from one year at a number of COSMOS-UK sites. We show that this results in improved soil moisture predictions from JULES over several years. This has been achieved by optimising parameters in the pedo-transfer function used to derive JULES soil physics parameters from soil texture information. Using data assimilation with LaVEnDAR in this way allows us to explore the relationships between soil moisture estimates, soil physics parameters and soil texture, as well as improving the agreement between JULES model outputs and observations.</p>


2021 ◽  
Vol 25 (3) ◽  
pp. 1617-1641
Author(s):  
Ewan Pinnington ◽  
Javier Amezcua ◽  
Elizabeth Cooper ◽  
Simon Dadson ◽  
Rich Ellis ◽  
...  

Abstract. Pedotransfer functions are used to relate gridded databases of soil texture information to the soil hydraulic and thermal parameters of land surface models. The parameters within these pedotransfer functions are uncertain and calibrated through analyses of point soil samples. How these calibrations relate to the soil parameters at the spatial scale of modern land surface models is unclear because gridded databases of soil texture represent an area average. We present a novel approach for calibrating such pedotransfer functions to improve land surface model soil moisture prediction by using observations from the Soil Moisture Active Passive (SMAP) satellite mission within a data assimilation framework. Unlike traditional calibration procedures, data assimilation always takes into account the relative uncertainties given to both model and observed estimates to find a maximum likelihood estimate. After performing the calibration procedure, we find improved estimates of soil moisture and heat flux for the Joint UK Land Environment Simulator (JULES) land surface model (run at a 1 km resolution) when compared to estimates from a cosmic-ray soil moisture monitoring network (COSMOS-UK) and three flux tower sites. The spatial resolution of the COSMOS probes is much more representative of the 1 km model grid than traditional point-based soil moisture sensors. For 11 cosmic-ray neutron soil moisture probes located across the modelled domain, we find an average 22 % reduction in root mean squared error, a 16 % reduction in unbiased root mean squared error and a 16 % increase in correlation after using data assimilation techniques to retrieve new pedotransfer function parameters.


2020 ◽  
Author(s):  
Ewan Pinnington ◽  
Javier Amezcua ◽  
Elizabeth Cooper ◽  
Simon Dadson ◽  
Rich Ellis ◽  
...  

Abstract. Pedotransfer functions are used to relate gridded databases of soil texture information to the soil hydraulic and thermal parameters of land surface models. The parameters within these pedotransfer functions are uncertain and calibrated through analyses of point soil samples. How these calibrations relate to the soil parameters at the spatial scale of modern land surface models is unclear, because gridded databases of soil texture represent an area average. We present a novel approach for calibrating such pedotransfer functions to improve land surface model soil moisture prediction by using observations from the Soil Moisture Active Passive (SMAP) satellite mission within a data assimilation framework. Unlike traditional calibration procedures data assimilation always takes into account the relative uncertainties given to both model and observed estimates to find a maximum likelihood estimate. After performing the calibration procedure we find improved estimates of soil moisture for the JULES land surface model (run at a 1 km resolution) when compared to estimates from a cosmic-ray soil moisture monitoring network (COSMOS-UK). The spatial resolution of these COSMOS probes is much more representative of the 1 km model grid than traditional point based soil moisture sensors. For 11 cosmic-ray neutron soil moisture probes located across the modelled domain we find an average 22 % reduction in root-mean squared error, a 16 % reduction in unbiased root-mean squared error and a 16 % increase in correlation after using data assimilation techniques to retrieve new pedotransfer function parameters.


2021 ◽  
Author(s):  
Elizabeth Cooper ◽  
Eleanor Blyth ◽  
Hollie Cooper ◽  
Richard Ellis ◽  
Ewan Pinnington ◽  
...  

<p>Accurate soil moisture predictions from land surface models are important in hydrological, ecological and agricultural applications. Despite increasing availability of wide area soil moisture measurements, few studies have combined soil moisture predictions from models with in-situ observations beyond the point scale. This work uses the LAVENDAR data assimilation framework to markedly improve soil moisture estimates from the JULES land surface model using field scale Cosmic Ray Neutron sensor observations from the UKCEH COSMOS-UK network. Rather than directly updating modelled soil moisture estimates towards measured values, we optimize constants in the underlying pedotransfer functions (PTF) which relate soil texture to soil hydraulics parameters. In this way we generate a single set of newly calibrated PTFs based on field scale observations from a number of UK sites with different soil types. We demonstrate that calibrating PTFs in this way can improve the performance of JULES. Further, we suggest that calibrating PTFs for the soils on which they are to be used and at the scales at which land surface models are applied (rather than on small-scale soil samples) will ultimately improve the performance of land surface models, potentially leading to improvements in flood, drought and climate projections.</p>


2021 ◽  
Vol 13 (16) ◽  
pp. 3068
Author(s):  
Haojin Zhao ◽  
Carsten Montzka ◽  
Roland Baatz ◽  
Harry Vereecken ◽  
Harrie-Jan Hendricks Franssen

Land surface models (LSMs) simulate water and energy cycles at the atmosphere–soil interface, however, the physical processes in the subsurface are typically oversimplified and lateral water movement is neglected. Here, a cross-evaluation of land surface model results (with and without lateral flow processes), the National Aeronautics and Space Administration (NASA) Soil Moisture Active/Passive (SMAP) mission soil moisture product, and cosmic-ray neutron sensor (CRNS) measurements is carried out over a temperate climate region with cropland and forests over western Germany. Besides a traditional land surface model (the Community Land Model (CLM) version 3.5), a coupled land surface-subsurface model (CLM-ParFlow) is applied. Compared to CLM stand-alone simulations, the coupled CLM-ParFlow model considered both vertical and lateral water movement. In addition to standard validation metrics, a triple collocation (TC) analysis has been performed to help understanding the random error variances of different soil moisture datasets. In this study, it is found that the three soil moisture datasets are consistent. The coupled and uncoupled model simulations were evaluated at CRNS sites and the coupled model simulations showed less bias than the CLM-standalone model (−0.02 cm3 cm−3 vs. 0.07 cm3 cm−3), similar random errors, but a slightly smaller correlation with the measurements (0.67 vs. 0.71). The TC-analysis showed that CLM-ParFlow reproduced better soil moisture dynamics than CLM stand alone and with a higher signal-to-noise ratio. This suggests that the representation of subsurface physics is of major importance in land surface modeling and that coupled land surface-subsurface modeling is of high interest.


2017 ◽  
Vol 21 (5) ◽  
pp. 2509-2530 ◽  
Author(s):  
Roland Baatz ◽  
Harrie-Jan Hendricks Franssen ◽  
Xujun Han ◽  
Tim Hoar ◽  
Heye Reemt Bogena ◽  
...  

Abstract. In situ soil moisture sensors provide highly accurate but very local soil moisture measurements, while remotely sensed soil moisture is strongly affected by vegetation and surface roughness. In contrast, cosmic-ray neutron sensors (CRNSs) allow highly accurate soil moisture estimation on the field scale which could be valuable to improve land surface model predictions. In this study, the potential of a network of CRNSs installed in the 2354 km2 Rur catchment (Germany) for estimating soil hydraulic parameters and improving soil moisture states was tested. Data measured by the CRNSs were assimilated with the local ensemble transform Kalman filter in the Community Land Model version 4.5. Data of four, eight and nine CRNSs were assimilated for the years 2011 and 2012 (with and without soil hydraulic parameter estimation), followed by a verification year 2013 without data assimilation. This was done using (i) a regional high-resolution soil map, (ii) the FAO soil map and (iii) an erroneous, biased soil map as input information for the simulations. For the regional soil map, soil moisture characterization was only improved in the assimilation period but not in the verification period. For the FAO soil map and the biased soil map, soil moisture predictions improved strongly to a root mean square error of 0.03 cm3 cm−3 for the assimilation period and 0.05 cm3 cm−3 for the evaluation period. Improvements were limited by the measurement error of CRNSs (0.03 cm3 cm−3). The positive results obtained with data assimilation of nine CRNSs were confirmed by the jackknife experiments with four and eight CRNSs used for assimilation. The results demonstrate that assimilated data of a CRNS network can improve the characterization of soil moisture content on the catchment scale by updating spatially distributed soil hydraulic parameters of a land surface model.


2021 ◽  
Vol 3 ◽  
Author(s):  
Amol Patil ◽  
Benjamin Fersch ◽  
Harrie-Jan Hendricks Franssen ◽  
Harald Kunstmann

Cosmic-Ray Neutron Sensing (CRNS) offers a non-invasive method for estimating soil moisture at the field scale, in our case a few tens of hectares. The current study uses the Ensemble Adjustment Kalman Filter (EAKF) to assimilate neutron counts observed at four locations within a 655 km2 pre-alpine river catchment into the Noah-MP land surface model (LSM) to improve soil moisture simulations and to optimize model parameters. The model runs with 100 m spatial resolution and uses the EU-SoilHydroGrids soil map along with the Mualem–van Genuchten soil water retention functions. Using the state estimation (ST) and joint state–parameter estimation (STP) technique, soil moisture states and model parameters controlling infiltration and evaporation rates were optimized, respectively. The added value of assimilation was evaluated for local and regional impacts using independent root zone soil moisture observations. The results show that during the assimilation period both ST and STP significantly improved the simulated soil moisture around the neutron sensors locations with improvements of the root mean square errors between 60 and 62% for ST and 55–66% for STP. STP could further enhance the model performance for the validation period at assimilation locations, mainly by reducing the Bias. Nevertheless, due to a lack of convergence of calculated parameters and a shorter evaluation period, performance during the validation phase degraded at a site further away from the assimilation locations. The comparison of modeled soil moisture with field-scale spatial patterns of a dense network of CRNS observations showed that STP helped to improve the average wetness conditions (reduction of spatial Bias from –0.038 cm3 cm−3 to –0.012 cm3 cm−3) for the validation period. However, the assimilation of neutron counts from only four stations showed limited success in enhancing the field-scale soil moisture patterns.


2017 ◽  
Vol 21 (6) ◽  
pp. 2843-2861 ◽  
Author(s):  
Joost Iwema ◽  
Rafael Rosolem ◽  
Mostaquimur Rahman ◽  
Eleanor Blyth ◽  
Thorsten Wagener

Abstract. At very high resolution scale (i.e. grid cells of 1 km2), land surface model parameters can be calibrated with eddy-covariance flux data and point-scale soil moisture data. However, measurement scales of eddy-covariance and point-scale data differ substantially. In our study, we investigated the impact of reducing the scale mismatch between surface energy flux and soil moisture observations by replacing point-scale soil moisture data with observations derived from Cosmic-Ray Neutron Sensors (CRNSs) made at larger spatial scales. Five soil and evapotranspiration parameters of the Joint UK Land Environment Simulator (JULES) were calibrated against point-scale and Cosmic-Ray Neutron Sensor soil moisture data separately. We calibrated the model for 12 sites in the USA representing a range of climatic, soil, and vegetation conditions. The improvement in latent heat flux estimation for the two calibration solutions was assessed by comparison to eddy-covariance flux data and to JULES simulations with default parameter values. Calibrations against the two soil moisture products alone did show an advantage for the cosmic-ray technique. However, further analyses of two-objective calibrations with soil moisture and latent heat flux showed no substantial differences between both calibration strategies. This was mainly caused by the limited effect of calibrating soil parameters on soil moisture dynamics and surface energy fluxes. Other factors that played a role were limited spatial variability in surface fluxes implied by soil moisture spatio-temporal stability, and data quality issues.


Sign in / Sign up

Export Citation Format

Share Document