scholarly journals Recasting catchment water balance for water allocation between human and environmental purposes

2015 ◽  
Vol 12 (1) ◽  
pp. 911-938
Author(s):  
S. Zhou ◽  
Y. Huang ◽  
Y. Wei ◽  
G. Wang

Abstract. Rebalancing water allocation between human consumptive uses and the environment in water catchments is a global challenge. The conventional water balance approach which partitions precipitation into evapotranspiration (ET) and surface runoff supports the optimization of water allocations among different human water use sectors under the cap of water supply. However, this approach is unable to support the emerging water management priority issue of allocating water between societal and ecological systems. This paper recast the catchment water balance by partitioning catchment total ET into ET for the society and ET for the natural ecological systems, and estimated the impacts of water allocation on the two systems in terms of gross primary productivity (GPP), in the Murray–Darling Basin (MDB) of Australia over the period 1900–2010. With the recast water balance, the more than 100 year water management in the MDB was divided into four periods corresponding to major changes in basin management: period 1 (1900–1956) expansion of water and land use by the societal system, period 2 (1956–1985) maximization of water and land use by the societal system, period 3 (1985–2002) maximization of water diversion for the societal system, and period 4 (2002–present) rebalancing of water and land use between the societal and ecological systems. The recast water balance provided new understandings of the water and land dynamics between societal and ecological systems in the MDB, and it highlighted the experiences and lessons of catchment water management in the MDB over the last more than 100 years. The recast water balance could serve as the theoretical foundation for water allocation to keep a dynamic balance between the societal and ecological systems within a basin for sustainable catchment development. It provides a new approach to advance the discipline of socio-hydrology.

2015 ◽  
Vol 19 (8) ◽  
pp. 3715-3726 ◽  
Author(s):  
S. Zhou ◽  
Y. Huang ◽  
Y. Wei ◽  
G. Wang

Abstract. Rebalancing water allocation between human consumptive uses and the environment in water catchments is a global challenge. This paper proposes a socio-hydrological water balance framework by partitioning catchment total evapotranspiration (ET) into ET for society and ET for natural ecological systems, and establishing the linkage between the changes of water balance and its social drivers and resulting environmental consequences in the Murray–Darling Basin (MDB), Australia, over the period 1900–2010. The results show that the 100-year period of water management in the MDB could be divided into four periods corresponding to major changes in basin management within the socio-hydrological water balance framework: period 1 (1900–1956) – expansion of water and land use for the societal system, period 2 (1956–1978) – maximization of water and land use for the societal system, period 3 (1978–2002) – maximization of water use for the societal system from water diversion, and period 4 (2002–present) – rebalancing of water and land use between the societal and ecological systems. Most of management changes in the MDB were passive and responsive. A precautionary approach to water allocation between the societal and ecological systems should be developed. The socio-hydrological water balance framework could serve as a theoretical foundation for water allocation to evaluate the dynamic balance between the societal and ecological systems in catchments.


2015 ◽  
Vol 76 (15) ◽  
Author(s):  
Satyanto K. Saptomo ◽  
Yudi Chadirin ◽  
Budi I. Setiawan ◽  
I Wayan Budiasa ◽  
Hisaaki Kato ◽  
...  

Subak had been known as superior and sustainable water management system in Bali’s paddy field, and had a long history as an interesting topic for study. Water management in Subak is more or less based on religious practices and the philosophy of the harmony among God, human and nature, that ensures equity and sufficiency of water diversion. Traditionally there is no water regulation in the meaning of gate operation as most Subak has their own water source from definite location, and fixed system was used for water diversion that defined portion of water discharge and not quantity. In this study, field monitoring system had been set up to continuously observe the water balance components such as: rainfall, evapotranspiration, percolation, field water status. With the available data, water balance equation can be used to obtain net inflow, which in this case only minimum, median and maximum for each particular month. These values were used to summarize total annual net inflow to the field, which ranges from 4575 to 7419 mm.  This is accounted as total water use for rice production at the site and generally it can be concluded as the amount of water required to sustain the present paddy field of the Subak.


2013 ◽  
Vol 17 (3) ◽  
pp. 1133-1148 ◽  
Author(s):  
C. E. Oldham ◽  
D. E. Farrow ◽  
S. Peiffer

Abstract. Assessing the potential for transfer of pollutants and nutrients across catchments is of primary importance under changing land use and climate. Over the past decade the connectivity/disconnectivity dynamic of a catchment has been related to its potential to export material; however, we continue to use multiple definitions of connectivity, and most have focused strongly on physical (hydrological or hydraulic) connectivity. In contrast, this paper constantly focuses on the dynamic balance between transport and material transformation, and defines material connectivity as the effective transfer of material between elements of the hydrological cycle. The concept of exposure timescales is developed and used to define three distinct regimes: (i) which is hydrologically connected and transport is dominated by advection; (ii) which is hydrologically connected and transport is dominated by diffusion; and (iii) which is materially isolated. The ratio of exposure timescales to material processing timescales is presented as the non-dimensional number, NE, where NE is reaction-specific and allows estimation of relevant spatial scales over which the reactions of interest take place. Case studies within each regime provide examples of how NE can be used to characterise systems according to their sensitivity to shifts in hydrology and gain insight into the biogeochemical processes that are signficant under the specified conditions. Finally, we explore the implications of the NE framework for improved water management, and for our understanding of biodiversity, resilience and chemical competitiveness under specified conditions.


2002 ◽  
Vol 45 (11) ◽  
pp. 217-223 ◽  
Author(s):  
G. Stewart ◽  
B. Harper

The formal allocation of water for the environment is a developing area of river management both scientifically and in terms of community participation. This case study, illustrating the recent use of the Barmah-Millewa Forest Environmental Water Allocation (EWA), provides a practical demonstration of community participation in environmental water management, the application of hydrological and biological “triggers” and a positive, demonstrable biological outcome from an environmental water allocation. The Barmah-Millewa Forest covers an area of 70,000 ha across the floodplain of the Murray River, upstream of the town of Echuca. About half the forest is in NSW (Millewa) and half is in Victoria (Barmah). The Barmah Forest is a Wetland of International Importance listed under the Convention on Wetlands - Ramsar Convention. The forest is the largest river redgum forest in the world. The natural flooding cycle associated with the forest has been significantly altered by regulation of the Murray River - impacting upon the overall health of the forest ecosystem. Recognising this, the Murray Darling Basin Commission developed a water management strategy for the forest to enhance forest, fish and wildlife values. To implement this strategy, between 1990 and 1993 reports were completed and community consultation took place. In 1993 the Murray Darling Basin Ministerial Council approved allocation of 100 Gigalitres of water per year, provided in equal shares by NSW and Victoria, to meet the needs of the forest ecosystem and in 1994 the Barmah-Millewa Forum was established under the Murray-Darling Basin Agreement. The vision for the Forum is to maintain and, where possible, improve the ecological and productive sustainability of the Barmah-Millewa Forest and to establish a planning and operational framework to better meet the flooding and drying requirements of the riparian forests and wetlands. Between October 2000 and January 2001 the Barmah-Millewa Forest Environmental Water Allocation was used for the second time. A total of 341 GL was released as an EWA. This amount represented only 8% of the total flows downstream of Yarrawonga Weir from September 2000 and January 2001. The strategic use of the relatively small amount of water enabled flooding to be maintained and ensured significant breeding success for water birds and other biota in the Forest.


2021 ◽  
Vol 893 (1) ◽  
pp. 012078
Author(s):  
G I S L Faski ◽  
Ig L S Purnama ◽  
S Suprayogi

Abstrak Water balance serves to determine hydrological conditions in a watershed, one of which is by analyzing the surplus (excess water) and deficit (water shortage) that occurs. Extreme surpluses or deficits can cause hydrometeorological disasters, such as floods or droughts. This study aims to calculate the monthly water balance using the Thornthwaite-Mather method to determine variations in the incidence of surplus and deficit months in all three sub-watersheds in Bengkulu Watershed, namely Rindu Hati, Susup, and Bengkulu Hilir sub-watershed. The data used are monthly hydrometeorological data for 2009-2018 (10 years) were divided into two periods of water balance based on land use data. Water balance period 1 (2009-2013) uses 2009 land use data, while period 2 (2014-2018) uses 2014 land use data. The results show that the surplus, deficit, runoff, and discharge in the three sub-watersheds in the Bengkulu watershed are affected by rainfall. In general, the deficit incidents in all three sub-watersheds occur almost every three years. The Rindu Hati and Susup sub-watersheds have the same variations of surplus and deficit month incidents, while the Bengkulu Hilir sub-watershed is different, both in periods 1 and 2. It is not only the rainfall that affects the variation in the events of surplus and deficit in all three sub-watersheds of the Bengkulu watershed, but also the amount of water holding capacity (WHC). Therefore, the application of hydrometeorological data to analyze the water balance conditions in the Bengkulu watershed provides information on climate impact on water resources and environmental impact on flows in the watershed.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1433
Author(s):  
Navneet Kumar ◽  
Asia Khamzina ◽  
Patrick Knöfel ◽  
John P. A. Lamers ◽  
Bernhard Tischbein

Climate change is likely to decrease surface water availability in Central Asia, thereby necessitating land use adaptations in irrigated regions. The introduction of trees to marginally productive croplands with shallow groundwater was suggested for irrigation water-saving and improving the land’s productivity. Considering the possible trade-offs with water availability in large-scale afforestation, our study predicted the impacts on water balance components in the lower reaches of the Amudarya River to facilitate afforestation planning using the Soil and Water Assessment Tool (SWAT). The land-use scenarios used for modeling analysis considered the afforestation of 62% and 100% of marginally productive croplands under average and low irrigation water supply identified from historical land-use maps. The results indicate a dramatic decrease in the examined water balance components in all afforestation scenarios based largely on the reduced irrigation demand of trees compared to the main crops. Specifically, replacing current crops (mostly cotton) with trees on all marginal land (approximately 663 km2) in the study region with an average water availability would save 1037 mln m3 of gross irrigation input within the study region and lower the annual drainage discharge by 504 mln m3. These effects have a considerable potential to support irrigation water management and enhance drainage functions in adapting to future water supply limitations.


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 38
Author(s):  
Nick Martin

Climate and land use and land cover (LULC) changes will impact watershed-scale water resources. These systemic alterations will have interacting influences on water availability. A probabilistic risk assessment (PRA) framework for water resource impact analysis from future systemic change is described and implemented to examine combined climate and LULC change impacts from 2011–2100 for a study site in west-central Texas. Internally, the PRA framework provides probabilistic simulation of reference and future conditions using weather generator and water balance models in series—one weather generator and water balance model for reference and one of each for future conditions. To quantify future conditions uncertainty, framework results are the magnitude of change in water availability, from the comparison of simulated reference and future conditions, and likelihoods for each change. Inherent advantages of the framework formulation for analyzing future risk are the explicit incorporation of reference conditions to avoid additional scenario-based analysis of reference conditions and climate change emissions scenarios. In the case study application, an increase in impervious area from economic development is the LULC change; it generates a 1.1 times increase in average water availability, relative to future climate trends, from increased runoff and decreased transpiration.


2021 ◽  
Vol 108 ◽  
pp. 103224
Author(s):  
Tárcio Rocha Lopes ◽  
Cornélio Alberto Zolin ◽  
Rafael Mingoti ◽  
Laurimar Gonçalves Vendrusculo ◽  
Frederico Terra de Almeida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document