scholarly journals EXTRACTION OF CLOUD HEIGHTS FROM SENTINEL-2 MULTISPECTRAL IMAGES

Author(s):  
T. Krauß

Abstract. Investigation of the focal plane assembly of the Sentinel-2 satellites show slight delays in the acquisition time of different bands on different CCD lines of about 0.5 to 1 second. This effect was already exploited in the detection of moving objects in very high resolution imagery as from WorldView-2 or -3 and also already for Sentinel-2 imagery. In our study we use the four 10-m-bands 2, 3, 4 and 8 (blue, green, red and near infrared) of Sentinel-2. In the level 1C processing each spectral band gets orthorectified separately on the same digital elevation model. So on the one hand moving objects on the ground experience a shift between the spectral bands. On the other hand objects not on the ground also show a slight shift between the spectral bands depending on the height of the object above ground. In this work we use this second effect. Analysis of cloudy Sentinel-2 scenes show small shifts of only one to two pixels depending on the height of the clouds above ground. So a new method based on algorithms for deriving dense digital elevation models from stereo imagery was developed to derive the cloud heights in Sentinel-2 images from the parallax from the 10-m-bands. After detailed description of the developed method it is applied to different cloudy Sentinel-2 images and the results are cross-checked using the shadows of the clouds together with the position of the sun at acquisition time.

2016 ◽  
Vol 22 (1) ◽  
pp. 95-107 ◽  
Author(s):  
Eder Paulo Moreira* ◽  
Márcio de Morisson Valeriano ◽  
Ieda Del Arco Sanches ◽  
Antonio Roberto Formaggio

The full potentiality of spectral vegetation indices (VIs) can only be evaluated after removing topographic, atmospheric and soil background effects from radiometric data. Concerning the former effect, the topographic effect was barely investigated in the context of VIs, despite the current availability correction methods and Digital elevation Model (DEM). In this study, we performed topographic correction on Landsat 5 TM spectral bands and evaluated the topographic effect on four VIs: NDVI, RVI, EVI and SAVI. The evaluation was based on analyses of mean and standard deviation of VIs and TM band 4 (near-infrared), and on linear regression analyses between these variables and the cosine of the solar incidence angle on terrain surface (cos i). The results indicated that VIs are less sensitive to topographic effect than the uncorrected spectral band. Among VIs, NDVI and RVI were less sensitive to topographic effect than EVI and SAVI. All VIs showed to be fully independent of topographic effect only after correction. It can be concluded that the topographic correction is required for a consistent reduction of the topographic effect on the VIs from rugged terrain.


2020 ◽  
Vol 12 (15) ◽  
pp. 2422
Author(s):  
Lisa Knopp ◽  
Marc Wieland ◽  
Michaela Rättich ◽  
Sandro Martinis

Wildfires have major ecological, social and economic consequences. Information about the extent of burned areas is essential to assess these consequences and can be derived from remote sensing data. Over the last years, several methods have been developed to segment burned areas with satellite imagery. However, these methods mostly require extensive preprocessing, while deep learning techniques—which have successfully been applied to other segmentation tasks—have yet to be fully explored. In this work, we combine sensor-specific and methodological developments from the past few years and suggest an automatic processing chain, based on deep learning, for burned area segmentation using mono-temporal Sentinel-2 imagery. In particular, we created a new training and validation dataset, which is used to train a convolutional neural network based on a U-Net architecture. We performed several tests on the input data and reached optimal network performance using the spectral bands of the visual, near infrared and shortwave infrared domains. The final segmentation model achieved an overall accuracy of 0.98 and a kappa coefficient of 0.94.


2019 ◽  
Vol 11 (17) ◽  
pp. 2050 ◽  
Author(s):  
Andrew Revill ◽  
Anna Florence ◽  
Alasdair MacArthur ◽  
Stephen Hoad ◽  
Robert Rees ◽  
...  

Leaf Area Index (LAI) and chlorophyll content are strongly related to plant development and productivity. Spatial and temporal estimates of these variables are essential for efficient and precise crop management. The availability of open-access data from the European Space Agency’s (ESA) Sentinel-2 satellite—delivering global coverage with an average 5-day revisit frequency at a spatial resolution of up to 10 metres—could provide estimates of these variables at unprecedented (i.e., sub-field) resolution. Using synthetic data, past research has demonstrated the potential of Sentinel-2 for estimating crop variables. Nonetheless, research involving a robust analysis of the Sentinel-2 bands for supporting agricultural applications is limited. We evaluated the potential of Sentinel-2 data for retrieving winter wheat LAI, leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC). In coordination with destructive and non-destructive ground measurements, we acquired multispectral data from an Unmanned Aerial Vehicle (UAV)-mounted sensor measuring key Sentinel-2 spectral bands (443 to 865 nm). We applied Gaussian processes regression (GPR) machine learning to determine the most informative Sentinel-2 bands for retrieving each of the variables. We further evaluated the GPR model performance when propagating observation uncertainty. When applying the best-performing GPR models without propagating uncertainty, the retrievals had a high agreement with ground measurements—the mean R2 and normalised root-mean-square error (NRMSE) were 0.89 and 8.8%, respectively. When propagating uncertainty, the mean R2 and NRMSE were 0.82 and 11.9%, respectively. When accounting for measurement uncertainty in the estimation of LAI and CCC, the number of most informative Sentinel-2 bands was reduced from four to only two—the red-edge (705 nm) and near-infrared (865 nm) bands. This research demonstrates the value of the Sentinel-2 spectral characteristics for retrieving critical variables that can support more sustainable crop management practices.


Proceedings ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 18
Author(s):  
Remy Fieuzal ◽  
Vincent Bustillo ◽  
David Collado ◽  
Gerard Dedieu

The aim of this study is to assess the possibilities of the VNIR (Visible and Near InfraRed) and SWIR (Short Wavelength InfraRed) satellite data for estimating intra-plot patterns of soil electrical resistivity consistent with ground measurements. The methodology is based on optical reflectances that constitute the input variables of random forest, alone or in combination with parameters derived from a digital elevation model (DEM). Over a field located in southwestern France, the results show high level of accuracy for the 0–50 and 0–100 cm soil layers (with R² of 0.69 and 0.59, and a relative RMSE of 18% and 16%, respectively), the performances being lower for the 0–170 cm layer (R² of 0.39, relative RMSE of 20%). The combined use of optical reflectances with parameters derived from the DEM slightly improves the performances, whatever the considered layer. The influence of each reflectance on soil electrical resistivity estimates is finally analyzed, showing that the wavelengths acquired in the SWIR have a relative higher importance than VNIR reflectance.


2020 ◽  
Vol 12 (8) ◽  
pp. 1238 ◽  
Author(s):  
Andrew Fletcher ◽  
Richard Mather

Small uncrewed aerial systems (UASs) generate imagery that can provide detailed information regarding condition and change if the products are reproducible through time. Densified point clouds form the basic information for digital surface models and orthorectified mosaics, so variable dense point reconstruction will introduce uncertainty. Eucalyptus trees typically have sparse and discontinuous canopies with pendulous leaves that present a difficult target for photogrammetry software. We examine how spectral band, season, solar azimuth, elevation, and some processing settings impact completeness and reproducibility of dense point clouds for shrub swamp and Eucalyptus forest canopy. At the study site near solar noon, selecting near infrared camera increased projected tree canopy fourfold, and dense point features more than 2 m above ground were increased sixfold compared to red spectral bands. Near infrared (NIR) imagery improved projected and total dense features two- and threefold, respectively, compared to default green band imagery. The lowest solar elevation captured (25°) consistently improved canopy feature reconstruction in all spectral bands. Although low solar elevations are typically avoided for radiometric reasons, we demonstrate that these conditions improve the detection and reconstruction of complex tree canopy features in natural Eucalyptus forests. Combining imagery sets captured at different solar elevations improved the reproducibility of dense point clouds between seasons. Total dense point cloud features reconstructed were increased by almost 10 million points (20%) when imagery used was NIR combining solar noon and low solar elevation imagery. It is possible to use agricultural multispectral camera rigs to reconstruct Eucalyptus tree canopy and shrub swamp by combining imagery and selecting appropriate spectral bands for processing.


Terr Plural ◽  
2021 ◽  
Vol 15 ◽  
pp. 1-25
Author(s):  
Isadora Taborda Silva ◽  
Jéssica Rabito Chaves ◽  
Helen Rezende Figueiredo ◽  
Bruno Silva Ferreira ◽  
César Claudio Cáceres Encina ◽  
...  

This paper evaluates the potential of false-color composite images, from 3 different remote sensing satellites, for the identification of continental wetlands. Landsat 8, Sentinel-2 and CBERS-4 scenes from three different Ramsar sites (i.e., sites designated to be of international importance) two sites located within the Mato-Grossense Pantanal and one within the Sul-mato-grossense were used for analyses. For each site, images from both the dry and rainy seasons were analyzed using Near-Infrared (NIR), Shortwave Infrared (SWIR), and visible (VIS) bands. The results show that false-color composite images from both the Landsat 8 and the Sentinel-2 satellites, with both SWIR 2-NIR-BLUE and NIR-SWIR-RED spectral band combinations, allow the identification of wetlands.


Author(s):  
Umakant Rawat ◽  
Ankit Yadav ◽  
P.S. Pawar ◽  
Aniket Rajput ◽  
Devendra Vasht ◽  
...  

Mapping and classification crop by using satellite images is a challenging task that can minimize the complexities of field visits. The recently launched Sentinel-2 satellite has thirteen spectral bands, short revisit time and determination at three different resolutions (10 m, 20 m and 60 m), besides that, the free availability of the images makes it a good choice for vegetation mapping. This study aims to classify crop, using single date Sentinel-2 imagery within the Jabalpur, state of Madhya Pradesh, India. The classification was performed by using Unsupervised Classification. In this study, four spectral bands, i.e., Near Infrared, Red, Green, and Blue of Sentinel-2 were stacked for the classification. The results show that the area of wheat crop corresponds to 83.07%; Gram/ Pulses, 14.64%; and other crop, 2.28%. The overall accuracy and overall Kappa Statistics of the classification using Sentinel-2 imagery are 85.71% and 0.819%, respectively. Therefore, this study has found that Sentinel-2 presented great potential in the mapping of the agriculture areas of Jabalpur by remote sensing.


Author(s):  
R. Saini ◽  
S. K. Ghosh

<p><strong>Abstract.</strong> Mapping of the crop using satellite images is a challenging task due to complexities within field, and having the similar spectral properties with other crops in the region. Recently launched Sentinel-2 satellite has thirteen spectral bands, fast revisit time and resolution at three different level (10<span class="thinspace"></span>m, 20<span class="thinspace"></span>m, 60<span class="thinspace"></span>m), as well as the free availability of data, makes it a good choice for vegetation mapping. This study aims to classify crop using single date Sentinel-2 imagery in the Roorkee, district Haridwar, Uttarakhand, India. Classification is performed by using two most popular and efficient machine learning algorithms: Random Forest (RF) and Support Vector Machine (SVM). In this study, four spectral bands, i.e., Near Infrared, Red, Green, and Blue of Sentinel-2 satellite are stacked for the classification. Results show that overall accuracy of the classification achieved by RF and SVM using Sentinel-2 imagery are 84.22% and 81.85% respectively. This study demonstrates that both classifiers performed well by setting an optimal value of tuning parameters, but RF achieved 2.37% higher overall accuracy over SVM. Analysis of the results states that the class specific accuracies of High-Density Forest attain the highest accuracy whereas Fodder class reports the lowest accuracy. Fodder achieve lowest accuracy because there is an intermixing of pixels among Wheat and Fodder crops. In this study, it is found that RF shows better potential in classifying crops more accurately in comparison to SVM and Sentinel-2 has great potential in vegetation mapping domain in remote sensing.</p>


2015 ◽  
Vol 45 (8) ◽  
pp. 1077-1085 ◽  
Author(s):  
Nea Kuusinen ◽  
Pauline Stenberg ◽  
Erkki Tomppo ◽  
Pierre Bernier ◽  
Frank Berninger

Inherent variability in the spectral properties of boreal forests complicates the retrieval of canopy properties such as canopy leaf area index from satellite images. Understanding the drivers of this variability could help provide better estimates of desired canopy cover properties. Field plot data from the Finnish National Forest Inventory and Landsat thematic mapper (TM) images were used to investigate the variation in canopy and understory reflectance during stand development in coniferous boreal forests. Spectral data for each plot were obtained from the Landsat pixel within which the plot center coordinates fell. Nonlinear unmixing was used to estimate the bidirectional reflectance factors (BRFs) of the “sunlit understory” and “canopy and shaded ground” components by site fertility and stand development classes. A forest albedo model was used to estimate the contribution of diffuse radiation reflected downwards from the canopy to the sunlit understory component. The sunlit understory BRF in the near-infrared spectral band decreased as the site fertility decreased and the forest matured, whereas the sunlit understory BRFs in the red and shortwave-infrared spectral bands concurrently increased. The BRFs of the canopy and shaded ground component decreased slightly during stand development, mostly in the near-infrared spectral band. Adding the diffuse contribution to the sunlit understory component changed the estimated component BRFs only a little (0.1%–1.7%) compared with those obtained using a linear mixing assumption. This effect was largest in the near-infrared spectral band and smallest in the red spectral band. For Norway spruce plots, the measured and estimated forest variables were well correlated with the BRFs in all of the studied spectral bands, but for the Scots pine plots, the correlations were notably weaker. Results show a greater importance of the fraction of visible sunlit understory on forest reflectance in Scots pine than in Norway spruce forests.


2020 ◽  
Author(s):  
Manaf Alkhuzaei ◽  
Matthew Brolly ◽  
Niall Burnside ◽  
Chris Carey ◽  
Georgios Maniatis

&lt;p&gt;The marine area of Bahrain comprises 91% of the total area of the country, the management of which is crucial for decision-makers, as it contains the country&amp;#8217;s most valuable resources. It is also ecologically important supporting such fauna as, sea dugong, dolphins, green turtles, and 70+ species of fish, and such flora as seagrass beds and algae which provide essential ecosystem services. Providing current benthic habitat maps using remote methods is vital for efficient management and monitoring of these dynamic resources. In this threefold study, remotely sensed Landsat 8/OLI and Sentinel-2 imagery, combined with field survey (176 points), are used to investigate, classify, and map benthic habitats in light of varying spatial and spectral image resolutions while also assessing the role sunglint correction methods perform. Two widely applied methodologies proposed by Hedley et al. (2005) and Lyzenga (2006) for sunglint correction in the water column are examined to assess their role in creating accurate classification maps in this region. Sunglint is an issue in Bahrain due to its shallow waters, long summer and clear skies. The results using unsupervised classification indicate the effectiveness of both correction methods, demonstrating comparable results of high classification accuracy using either 3 (Blue, Green and Red) or 4 (Coastal Aerosol, Blue, Green and Red) spectral band combinations. Maximum accuracy using Hedley was 74% (4 bands) for Landsat 8 and 80% (3 bands) for Sentinel-2 while for Lyzenga 74% (4 bands) for Landsat 8 and 80% (3 bands) for Sentinel 2. The outputs generated were all &gt;68%, with the introduction of more spectral bands associated with higher accuracy for Landsat 8 but inversely for Sentinel 2.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document