scholarly journals EXPERIMENT ON UAV PHOTOGRAMMETRY AND TERRESTRIAL LASER SCANNING FOR ICT-INTEGRATED CONSTRUCTION

Author(s):  
N. Takahashi ◽  
R. Wakutsu ◽  
T. Kato ◽  
T. Wakaizumi ◽  
T. Ooishi ◽  
...  

In the 2016 fiscal year the Ministry of Land, Infrastructure, Transport and Tourism of Japan started a program integrating construction and ICT in earthwork and concrete placing. The new program named “i-Construction” focusing on productivity improvement adopts such new technologies as UAV photogrammetry and TLS. We report a field experiment to investigate whether the procedures of UAV photogrammetry and TLS following the standards for “i-Construction” are feasible or not. In the experiment we measured an embankment of about 80 metres by 160 metres immediately after earthwork was done on the embankment. We used two sets of UAV and camera in the experiment. One is a larger UAV enRoute Zion QC730 and its onboard camera Sony α6000. The other is a smaller UAV DJI Phantom 4 and its dedicated onboard camera. Moreover, we used a terrestrial laser scanner FARO Focus3D X330 based on the phase shift principle. The experiment results indicate that the procedures of UAV photogrammetry using a QC730 with an α6000 and TLS using a Focus3D X330 following the standards for “i-Construction” would be feasible. Furthermore, the experiment results show that UAV photogrammetry using a lower price UAV Phantom 4 was unable to satisfy the accuracy requirement for “i-Construction.” The cause of the low accuracy by Phantom 4 is under investigation. We also found that the difference of image resolution on the ground would not have a great influence on the measurement accuracy in UAV photogrammetry.

Author(s):  
Vokulova Yu.A. Vokulova ◽  
E.N. Zhulev

This article presents the results of studying the dimensional accuracy of the bases of complete removable prostheses made using a 3D printer and the traditional method. Bases of complete removable prostheses were made using an intraoral laser scanner iTero Cadent (USA) and a 3D printer Asiga Max UV (Australia). To study the dimensional accuracy of the bases of complete removable prostheses, we used the DentalCAD 2.2 Valletta software. The Nonparametric Wilcoxon W-test was used for statistical analysis of the obtained data. We found that the average value of the difference with the standard for bases made using digital technologies is 0.08744±0.0484 mm. The average value of the difference with the standard for bases made by the traditional method is 0.5654±0.1611 mm. Based on these data, we concluded that the bases of complete removable prostheses made using modern digital technologies (intraoral laser scanning and 3D printer) have a higher dimensional accuracy compared to the bases of complete removable prostheses made using the traditional method with a significance level of p<0.05 (Wilcoxon's W-test=0, p=0.031). Keywords: digital technologies in dentistry, digital impressions, intraoral scanner, 3D printing, ExoCAD, complete removable dentures.


Author(s):  
N. Ali Khodja ◽  
H. Zeghlache ◽  
F. Benali ◽  
O. Guani

<p><strong>Abstract.</strong> The present paper deals with the techniques using the laser scanner survey in the restoration of the statue of Fouara in Setif, Algeria. This statue which is made of marble was realized by Francis de St Vidal in 1899 that represents a nymph which is a part of the fountain, publicly displayed in the center of the city's main plaza. On 18 December 2018, a man defaced the statue, removing the facial features and breasts with a hammer and chisel.</p><p>As a matter of fact, the build cultural heritage in Algeria is in danger from attacks and reaction time deterioration with age. Following the day of the incident, our team has been called to use a previous scanner laser survey of the nymph that was stored in our cultural heritage monument database in order to help the restoration of the missing part of the nymph (the face and the breast. as matter of fact, the original laser scanning survey provided a helpful and accurate details to support the restoration of the nymph.</p>


Author(s):  
N. A. S. Russhakim ◽  
M. F. M. Ariff ◽  
Z. Majid ◽  
K. M. Idris ◽  
N. Darwin ◽  
...  

<p><strong>Abstract.</strong> The popularity of Terrestrial Laser Scanner (TLS) has been introduced into a field of surveying and has increased dramatically especially in producing the 3D model of the building. The used of terrestrial laser scanning (TLS) is becoming rapidly popular because of its ability in several applications, especially the ability to observe complex documentation of complex building and observe millions of point cloud in three-dimensional in a short period. Users of building plan usually find it difficult to translate the traditional two-dimensional (2D) data on maps they see on a flat piece of paper to three-dimensional (3D). The TLS is able to record thousands of point clouds which contains very rich of geometry details and made the processing usually takes longer time. In addition, the demand of building survey work has made the surveyors need to obtain the data with full of accuracy and time saves. Therefore, the aim of this study is to study the limitation uses of TLS and its suitability for building survey and mapping. In this study, the efficiency of TLS Leica C10 for building survey was determined in term of its accuracy and comparing with Zeb-Revo Handheld Mobile Laser Scanning (MLS) and the distometer. The accuracy for scanned data from both, TLS and MLS were compared with the Distometer by using root mean square error (RMSE) formula. Then, the 3D model of the building for both data, TLS and MLS were produced to analyze the visualization for different type of scanners. The software used; Autodesk Recap, Autodesk Revit, Leica Cyclone Software, Autocad Software and Geo Slam Software. The RMSE for TLS technique is 0.001<span class="thinspace"></span>m meanwhile, RMSE for MLS technique is 0.007<span class="thinspace"></span>m. The difference between these two techniques is 0.006<span class="thinspace"></span>m. The 3D model of building for both models did not have too much different but the scanned data from TLS is much easier to process and generate the 3D model compared to scanned data from MLS. It is because the scanned data from TLS comes with an image, while none from MLS scanned data. There are limitations of TLS for building survey such as water and glass window but this study proved that acquiring data by TLS is better than using MLS.</p>


2020 ◽  
Vol 9 (7) ◽  
pp. 455
Author(s):  
Mikko Maksimainen ◽  
Matti T. Vaaja ◽  
Matti Kurkela ◽  
Juho-Pekka Virtanen ◽  
Arttu Julin ◽  
...  

Roadside vegetation can affect the performance of installed road lighting. We demonstrate a workflow in which a car-mounted measurement system is used to assess the light-obstructing effect of roadside vegetation. The mobile mapping system (MMS) includes a panoramic camera system, laser scanner, inertial measurement unit, and satellite positioning system. The workflow and the measurement system were applied to a road section of Munkkiniemenranta, Helsinki, Finland, in 2015 and 2019. The relative luminance distribution on a road surface and the obstructing vegetation were measured before and after roadside vegetation pruning applying a luminance-calibrated mobile mapping system. The difference between the two measurements is presented, and the opportunities provided by the mobile 3D luminance measurement system are discussed.


Author(s):  
M. Pilarska ◽  
W. Ostrowski ◽  
K. Bakuła ◽  
K. Górski ◽  
Z. Kurczyński

Modern photogrammetry and remote sensing have found small Unmanned Aerial Vehicles (UAVs) to be a valuable source of data in various branches of science and industry (e.g., agriculture, cultural heritage). Recently, the growing role of laser scanning in the application of UAVs has also been observed. Laser scanners dedicated to UAVs consist of four basic components: a laser scanner (LiDAR), an Inertial Measurement Unit (IMU), a Global Navigation Satellite System (GNSS) receiver and an on-board computer. The producers of the system provide users with detailed descriptions of the accuracies separately for each component. However, the final measurement accuracy is not given. This paper reviews state-of-the-art of laser scanners developed specifically for use on a UAV, presenting an overview of several constructions that are available nowadays. The second part of the paper is focussed on analysing the influence of the sensor accuracies on the final measurement accuracy. Mathematical models developed for Airborne Laser Scanning (ALS) accuracy analyses are used to estimate the theoretical accuracies of different scanners with conditions typical for UAV missions. Finally, the theoretical results derived from the mathematical simulations are compared with an experimental use case.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1864
Author(s):  
Peter Mewis

The effect of vegetation in hydraulic computations can be significant. This effect is important for flood computations. Today, the necessary terrain information for flood computations is obtained by airborne laser scanning techniques. The quality and density of the airborne laser scanning information allows for more extensive use of these data in flow computations. In this paper, known methods are improved and combined into a new simple and objective procedure to estimate the hydraulic resistance of vegetation on the flow in the field. State-of-the-art airborne laser scanner information is explored to estimate the vegetation density. The laser scanning information provides the base for the calculation of the vegetation density parameter ωp using the Beer–Lambert law. In a second step, the vegetation density is employed in a flow model to appropriately account for vegetation resistance. The use of this vegetation parameter is superior to the common method of accounting for the vegetation resistance in the bed resistance parameter for bed roughness. The proposed procedure utilizes newly available information and is demonstrated in an example. The obtained values fit very well with the values obtained in the literature. Moreover, the obtained information is very detailed. In the results, the effect of vegetation is estimated objectively without the assignment of typical values. Moreover, a more structured flow field is computed with the flood around denser vegetation, such as groups of bushes. A further thorough study based on observed flow resistance is needed.


Author(s):  
Mike Jones ◽  
David J. Nelmes

Alstom Power is executing the steam turbine retrofit of six nuclear units for Exelon Generation in the USA. The existing turbine-generators are an 1800 RPM General Electric design originally rated at 912 MWe and 1098 MWe and powered by Boiling Water Reactors. 18 Low Pressure inner modules will be replaced, with the first due to be installed in March 2010. This project is particularly challenging — the aggressive retrofit installation schedule is compounded by the requirement to handle radioactively contaminated equipment and also comply with demanding regulations applicable to BWR plant. The author’s company has extensive experience in the steam turbine retrofit business, having supplied around 800 retrofit cylinders globally since the 1970’s. However, this LP upgrade challenges the established techniques used in the business and requires extraordinary effort. Traditional retrofit engineering and installation principles have been interrogated and developed to meet the specific requirements of this project. Innovative techniques are introduced, including the extensive use of the Leica HDS 6000 laser scanner to model the existing plant. The approach has advanced the field of steam turbine retrofit design and installation significantly. The first section of this paper focuses on the extraordinary considerations of the project and the challenges surrounding BWR plant. The second part describes the laser scanning technique and the application of scan data. It outlines the innovative solutions which have been developed.


2021 ◽  
Vol 13 (1) ◽  
pp. 690-704
Author(s):  
Lichun Sui ◽  
Jianfeng Zhu ◽  
Mianqing Zhong ◽  
Xue Wang ◽  
Junmei Kang

Abstract Various means of extracting road boundary from mobile laser scanning data based on vehicle trajectories have been investigated. Independent of positioning and navigation data, this study estimated the scanner ground track from the spatial distribution of the point cloud as an indicator of road location. We defined a typical edge block consisting of multiple continuous upward fluctuating points by abrupt changes in elevation, upward slope, and road horizontal slope. Subsequently, such edge blocks were searched for on both sides of the estimated track. A pseudo-mileage spacing map was constructed to reflect the variation in spacing between the track and edge blocks over distance, within which road boundary points were detected using a simple linear tracking model. Experimental results demonstrate that the ground trajectory of the extracted scanner forms a smooth and continuous string just on the road; this can serve as the basis for defining edge block and road boundary tracking algorithms. The defined edge block has been experimentally verified as highly accurate and strongly noise resistant, while the boundary tracking algorithm is simple, fast, and independent of the road boundary model used. The correct detection rate of the road boundary in two experimental data is more than 99.2%.


Author(s):  
D. Shevchenko ◽  
V. Mihaylov

The article is devoted to the problems of digital transformation of companies in the service sector. The article describes the concepts of "digitization", "digitalization", "digital transformation", "automation". The analysis of the main sectors of the public services sector, the processes of transformation into a new business model of their development is carried out. Specific examples show the role of digital technologies implemented by individual companies, the leaders of their industry: "Internet of Things" (IoT); virtual diagnostics of the service; mobile applications and portals; artificial intelligence and machine learning (AI / ML); remote maintenance; UX design; virtual reality; cloud technologies; online services and others. The authors proceed from understanding the difference between automation and digitalization, the strategic goal of which is to create a new digital business model that creates new value. The result of digital transformation is the reconfiguration of processes that change the business logic of the company and the process of creating value. The article concludes that the rapid development of new technologies leads to the fact that companies face not only a dilemma when choosing the most suitable technologies for investment, but also the problem of staffing and finding an adequate organizational structure to create and maintain a new business model of the company.


Sign in / Sign up

Export Citation Format

Share Document