scholarly journals TWO METHODS FOR REMOTE ESTIMATION OF COMPLETE URBAN SURFACE TEMPERATURE

Author(s):  
L. Jiang ◽  
W. Zhan ◽  
Z. Zou

Complete urban surface temperature (<i>T</i><sub>C</sub>) is a key parameter for evaluating the energy exchange between the urban surface and atmosphere. At the present stage, the estimation of <i>T</i><sub>C</sub> still needs detailed 3D structure information of the urban surface, however, it is often difficult to obtain the geometric structure and composition of the corresponding temperature of urban surface, so that there is still lack of concise and efficient method for estimating the <i>T</i><sub>C</sub> by remote sensing. Based on the four typical urban surface scale models, combined with the Envi-met model, thermal radiant directionality forward modeling and kernel model, we analyzed a complete day and night cycle hourly component temperature and radiation temperature in each direction of two seasons of summer and winter, and calculated hemispherical integral temperature and <i>T</i><sub>C</sub>. The conclusion is obtained by examining the relationship of directional radiation temperature, hemispherical integral temperature and <i>T</i><sub>C</sub>: (1) There is an optimal angle of radiation temperature approaching the <i>T</i><sub>C</sub> in a single observation direction when viewing zenith angle is 45&amp;ndash;60°, the viewing azimuth near the vertical surface of the sun main plane, the average absolute difference is about 1.1&amp;thinsp;K in the daytime. (2) There are several (3&amp;ndash;5 times) directional temperatures of different view angle, under the situation of using the thermal radiation directionality kernel model can more accurately calculate the hemispherical integral temperature close to <i>T</i><sub>C</sub>, the mean absolute error is about 1.0&amp;thinsp;K in the daytime. This study proposed simple and effective strategies for estimating <i>T</i><sub>C</sub> by remote sensing, which are expected to improve the quantitative level of remote sensing of urban thermal environment.

2021 ◽  
Vol 13 (20) ◽  
pp. 11203
Author(s):  
Shanshan Xu ◽  
Kun Yang ◽  
Yuanting Xu ◽  
Yanhui Zhu ◽  
Yi Luo ◽  
...  

With the continuous advancement of urbanization, the impervious surface expands. Urbanization has changed the structure of the natural land surface and led to the intensification of the urban heat island (UHI) effect. This will affect the surface runoff temperature, which, in turn, will affect the surface water temperature of urban lakes. This study will use UAS TIR (un-manned aerial system thermal infrared radiance) remote sensing and in situ observation technology to monitor the urban space surface temperature and thermal runoff in Kunming, Yunnan, in summer; explore the feasibility of UAS TIR remote sensing to continuously observe urban surface temperature during day and night; and analyze thermal runoff pollution. The results of the study show that the difference between UAS TIR LSTs and in situ LSTs (in situ air temperature 10 cm above the ground.) varies with the type of land covers. Urban surface thermal runoff has varying degrees of impact on water bodies. Based on the influence of physical factors such as vegetation and buildings and meteorological factors such as solar radiation, the RMSE between UAS LSTs and in situ LSTs varies from 1 to 5 °C. Land cover types such as pervious bricks, asphalt, and cement usually show higher RMSE values. Before and after rainfall, the in situ data of the lake surface water temperature (LSWT) showed a phenomenon of first falling and then rising. The linear regression analysis results show that the R2 of the daytime model is 0.92, which has high consistency; the average R2 at night is 0.38; the averages R2 before and after rainfall are 0.50 and 0.83, respectively; and the average RMSE is 1.94 °C. Observational data shows that thermal runoff quickly reaches thermal equilibrium with the land surface temperature about 30 min after rainfall. The thermal runoff around the lake has a certain warming effect on LSWT.


2009 ◽  
Vol 12 (4) ◽  
pp. 107-120
Author(s):  
Van Thi Tran ◽  
Lan Thai Hoang ◽  
Trung Van Le

Thermal infrared remote sensing potentially measures the earth's surface radiation for retrieving surface temperature values in the whole study area by pixel. The paper presents the results of study on methodology to determinate the urban surface temperature of Ho Chi Minh City considered surface emissivity factor from NDVI method. This method shows the surface temperature map with spatial resolution higher than the one derived directly from the thermal bands. The experiment was carried out on two kinds of the satellite images such as Landsat and Aster owing the thermal infrared bands with the medium spatial resolution, suitable for studies on heat processes in urban areas. The results were compared with the in situ measurements in 10 observed sites and analyzed in errors by many other methods for proving the method preeminent in the study condition. The results will contribute a new approach to resolve the determination of meteorological parameters related to heat processes in climate change research at present.


2019 ◽  
Vol 21 (2) ◽  
pp. 1310-1320
Author(s):  
Cícera Celiane Januário da Silva ◽  
Vinicius Ferreira Luna ◽  
Joyce Ferreira Gomes ◽  
Juliana Maria Oliveira Silva

O objetivo do presente trabalho é fazer uma comparação entre a temperatura de superfície e o Índice de Vegetação por Diferença Normalizada (NDVI) na microbacia do rio da Batateiras/Crato-CE em dois períodos do ano de 2017, um chuvoso (abril) e um seco (setembro) como também analisar o mapa de diferença de temperatura nesses dois referidos períodos. Foram utilizadas imagens de satélite LANDSAT 8 (banda 10) para mensuração de temperatura e a banda 4 e 5 para geração do NDVI. As análises demonstram que no mês de abril a temperatura da superfície variou aproximadamente entre 23.2ºC e 31.06ºC, enquanto no mês correspondente a setembro, os valores variaram de 25°C e 40.5°C, sendo que as maiores temperaturas foram encontradas em locais com baixa densidade de vegetação, de acordo com a carta de NDVI desses dois meses. A maior diferença de temperatura desses dois meses foi de 14.2°C indicando que ocorre um aumento da temperatura proporcionado pelo período que corresponde a um dos mais secos da região, diferentemente de abril que está no período de chuvas e tem uma maior umidade, presença de vegetação e corpos d’água que amenizam a temperatura.Palavras-chave: Sensoriamento Remoto; Vegetação; Microbacia.                                                                                  ABSTRACTThe objective of the present work is to compare the surface temperature and the Normalized Difference Vegetation Index (NDVI) in the Batateiras / Crato-CE river basin in two periods of 2017, one rainy (April) and one (September) and to analyze the temperature difference map in these two periods. LANDSAT 8 (band 10) satellite images were used for temperature measurement and band 4 and 5 for NDVI generation. The analyzes show that in April the surface temperature varied approximately between 23.2ºC and 31.06ºC, while in the month corresponding to September, the values ranged from 25ºC and 40.5ºC, and the highest temperatures were found in locations with low density of vegetation, according to the NDVI letter of these two months. The highest difference in temperature for these two months was 14.2 ° C, indicating that there is an increase in temperature provided by the period that corresponds to one of the driest in the region, unlike April that is in the rainy season and has a higher humidity, presence of vegetation and water bodies that soften the temperature.Key-words: Remote sensing; Vegetation; Microbasin.RESUMENEl objetivo del presente trabajo es hacer una comparación entre la temperatura de la superficie y el Índice de Vegetación de Diferencia Normalizada (NDVI) en la cuenca Batateiras / Crato-CE en dos períodos de 2017, uno lluvioso (abril) y uno (Septiembre), así como analizar el mapa de diferencia de temperatura en estos dos períodos. Las imágenes de satélite LANDSAT 8 (banda 10) se utilizaron para la medición de temperatura y las bandas 4 y 5 para la generación de NDVI. Los análisis muestran que en abril la temperatura de la superficie varió aproximadamente entre 23.2ºC y 31.06ºC, mientras que en el mes correspondiente a septiembre, los valores oscilaron entre 25 ° C y 40.5 ° C, y las temperaturas más altas se encontraron en lugares con baja densidad de vegetación, según el gráfico NDVI de estos dos meses. La mayor diferencia de temperatura de estos dos meses fue de 14.2 ° C, lo que indica que hay un aumento en la temperatura proporcionada por el período que corresponde a uno de los más secos de la región, a diferencia de abril que está en la temporada de lluvias y tiene una mayor humedad, presencia de vegetación y cuerpos de agua que suavizan la temperatura.Palabras clave: Detección remota; vegetación; Cuenca.


2020 ◽  
Vol 3 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Abdulla Al Kafy ◽  
Abdullah Al-Faisal ◽  
Mohammad Mahmudul Hasan ◽  
Md. Soumik Sikdar ◽  
Mohammad Hasib Hasan Khan ◽  
...  

Urbanization has been contributing more in global climate warming, with more than 50% of the population living in cities. Rapid population growth and change in land use / land cover (LULC) are closely linked. The transformation of LULC due to rapid urban expansion significantly affects the functions of biodiversity and ecosystems, as well as local and regional climates. Improper planning and uncontrolled management of LULC changes profoundly contribute to the rise of urban land surface temperature (LST). This study evaluates the impact of LULC changes on LST for 1997, 2007 and 2017 in the Rajshahi district (Bangladesh) using multi-temporal and multi-spectral Landsat 8 OLI and Landsat 5 TM satellite data sets. The analysis of LULC changes exposed a remarkable increase in the built-up areas and a significant decrease in the vegetation and agricultural land. The built-up area was increased almost double in last 20 years in the study area. The distribution of changes in LST shows that built-up areas recorded the highest temperature followed by bare land, vegetation and agricultural land and water bodies. The LULC-LST profiles also revealed the highest temperature in built-up areas and the lowest temperature in water bodies. In the last 20 years, LST was increased about 13ºC. The study demonstrates decrease in vegetation cover and increase in non-evaporating surfaces with significantly increases the surface temperature in the study area. Remote-sensing techniques were found one of the suitable techniques for rapid analysis of urban expansions and to identify the impact of urbanization on LST.


Sign in / Sign up

Export Citation Format

Share Document