TEMPERATURA DE SUPERFÍCIE E A RELAÇÃO COM O ÍNDICE DE VEGETAÇÃO POR DIFERENÇA NORMALIZADA (NDVI) NA MICROBACIA DO RIO DA BATATEIRAS, CRATO-CE

2019 ◽  
Vol 21 (2) ◽  
pp. 1310-1320
Author(s):  
Cícera Celiane Januário da Silva ◽  
Vinicius Ferreira Luna ◽  
Joyce Ferreira Gomes ◽  
Juliana Maria Oliveira Silva

O objetivo do presente trabalho é fazer uma comparação entre a temperatura de superfície e o Índice de Vegetação por Diferença Normalizada (NDVI) na microbacia do rio da Batateiras/Crato-CE em dois períodos do ano de 2017, um chuvoso (abril) e um seco (setembro) como também analisar o mapa de diferença de temperatura nesses dois referidos períodos. Foram utilizadas imagens de satélite LANDSAT 8 (banda 10) para mensuração de temperatura e a banda 4 e 5 para geração do NDVI. As análises demonstram que no mês de abril a temperatura da superfície variou aproximadamente entre 23.2ºC e 31.06ºC, enquanto no mês correspondente a setembro, os valores variaram de 25°C e 40.5°C, sendo que as maiores temperaturas foram encontradas em locais com baixa densidade de vegetação, de acordo com a carta de NDVI desses dois meses. A maior diferença de temperatura desses dois meses foi de 14.2°C indicando que ocorre um aumento da temperatura proporcionado pelo período que corresponde a um dos mais secos da região, diferentemente de abril que está no período de chuvas e tem uma maior umidade, presença de vegetação e corpos d’água que amenizam a temperatura.Palavras-chave: Sensoriamento Remoto; Vegetação; Microbacia.                                                                                  ABSTRACTThe objective of the present work is to compare the surface temperature and the Normalized Difference Vegetation Index (NDVI) in the Batateiras / Crato-CE river basin in two periods of 2017, one rainy (April) and one (September) and to analyze the temperature difference map in these two periods. LANDSAT 8 (band 10) satellite images were used for temperature measurement and band 4 and 5 for NDVI generation. The analyzes show that in April the surface temperature varied approximately between 23.2ºC and 31.06ºC, while in the month corresponding to September, the values ranged from 25ºC and 40.5ºC, and the highest temperatures were found in locations with low density of vegetation, according to the NDVI letter of these two months. The highest difference in temperature for these two months was 14.2 ° C, indicating that there is an increase in temperature provided by the period that corresponds to one of the driest in the region, unlike April that is in the rainy season and has a higher humidity, presence of vegetation and water bodies that soften the temperature.Key-words: Remote sensing; Vegetation; Microbasin.RESUMENEl objetivo del presente trabajo es hacer una comparación entre la temperatura de la superficie y el Índice de Vegetación de Diferencia Normalizada (NDVI) en la cuenca Batateiras / Crato-CE en dos períodos de 2017, uno lluvioso (abril) y uno (Septiembre), así como analizar el mapa de diferencia de temperatura en estos dos períodos. Las imágenes de satélite LANDSAT 8 (banda 10) se utilizaron para la medición de temperatura y las bandas 4 y 5 para la generación de NDVI. Los análisis muestran que en abril la temperatura de la superficie varió aproximadamente entre 23.2ºC y 31.06ºC, mientras que en el mes correspondiente a septiembre, los valores oscilaron entre 25 ° C y 40.5 ° C, y las temperaturas más altas se encontraron en lugares con baja densidad de vegetación, según el gráfico NDVI de estos dos meses. La mayor diferencia de temperatura de estos dos meses fue de 14.2 ° C, lo que indica que hay un aumento en la temperatura proporcionada por el período que corresponde a uno de los más secos de la región, a diferencia de abril que está en la temporada de lluvias y tiene una mayor humedad, presencia de vegetación y cuerpos de agua que suavizan la temperatura.Palabras clave: Detección remota; vegetación; Cuenca.

Author(s):  
S.A. Yeprintsev ◽  
O.V. Klepikov ◽  
S.V. Shekoyan

Introduction: Spatial zoning of an urban area by the level of anthropogenic burden using land-based research methods is very time-consuming. Since the end of the 20th century, the usage of the Earth remote sensing (ERS) techniques has served as their more efficient alternative. The study objectives included geoinformation zoning and evaluation of the level of technogenic changes in the areas according to NDVI (Normalized Difference Vegetation Index) values. Materials and methods: The cities of the Voronezh Region and their suburban ten-kilometer territories were chosen as the study objects. For the spatial analysis of the area of anthropogenically modified territories based on the example of the cities of the Voronezh Region we created an archive of multichannel satellite images taken by the Landsat-7 and Landsat-8 satellites. The data were borrowed from the Website of the US Geological Survey. Space images were grouped by two periods (the years of 2001 and 2016). Depending on NDVI values, territories with high and low anthropogenic burden, natural framework zones, and water bodies were distinguished. Results: We established that the smallest percentage of areas of the natural framework and their poor location was observed in the city of Voronezh. The largest area occupied by the natural framework was identified within the town of Borisoglebsk. This fact is attributed to the sensible policy of ensuring environmental and hygienic safety of the population implemented by the regional and municipal authorities. Discussion: At present, it is still impossible to fully use space monitoring data to assess health risks of technogenic factors; they can only be used simultaneously with ground monitoring that includes instrumental and laboratory monitoring of environmental quality indicators within the framework of the socio-hygienic monitoring. Conclusions: The analysis of changes in the proportion of areas with a high anthropogenic burden relative to the natural framework performed using satellite images taken in 2001 and 2016 showed an increase in the technogenic burden on the urban environment.


2018 ◽  
Vol 15 (35) ◽  
pp. 133-141
Author(s):  
Israa J. Muhsin

Karbala province regarded one part significant zones in Iraq and considered an economic resource of vegetation such as trees of fruits, sieve and other vegetation. This research aimed to utilize Normalized Difference Vegetation index (NDVI) and Subtracted (NDVI) for investigating the current vegetation cover at last four decay. The Normalized Difference Vegetation Index (NDVI) is the most extensively used satellite index of vegetation health and density. The primary goals of this research are gather a gathering of studied area (Karbala province) satellite images in sequence time for a similar region, these image captured by Landsat (TM 1985, TM 1995, ETM+ 2005 and Landsat 8 OLI (Operational Land Imager) 2015. Preprocessing such gap filling consider being vital stride has been implied on the defected image which captured in Landsat 2005 and isolate the regions of studied region. The Assessment vegetal cover changes of the studied area in this paper has been implemented using Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI) and change detection techniques such as Subtracted (NDVI) method also have been used to detect the change in vegetal cover of the studied region. Many histogram and statistical properties were illustrated has been computed. From The results shows there are increasing in the vegetal cover from 1985 to 2015.


2019 ◽  
Vol 11 (24) ◽  
pp. 7056 ◽  
Author(s):  
Jae-Ik Kim ◽  
Myung-Jin Jun ◽  
Chang-Hwan Yeo ◽  
Ki-Hyun Kwon ◽  
Jun Yong Hyun

This study investigated how changes in land surface temperature (LST) during 2004 and 2014 were attributable to zoning-based land use type in Seoul in association with the building coverage ratio (BCR), floor area ratio (FAR), and a normalized difference vegetation index (NDVI). We retrieved LSTs and NDVI data from satellite images, Landsat TM 5 for 2004 and Landsat 8 TIRS for 2014 and combined them with parcel-based land use information, which contained data on BCR, FAR, and zoning-based land use type. The descriptive analysis results showed a rise in LST for the low- and medium-density residential land, whereas significant LST decreases were found in high-density residential, semi-residential, and commercial areas over the time period. Statistical results further supported these findings, yielding statistically significant negative coefficient values for all interaction variables between higher-density land use types and a year-based dummy variable. The findings appear to be related to residential densification involving the provision of more high-rise apartment complexes and government efforts to secure more parks and green spaces through urban redevelopment and renewal projects.


CERNE ◽  
2017 ◽  
Vol 23 (4) ◽  
pp. 413-422 ◽  
Author(s):  
Eduarda Martiniano de Oliveira Silveira ◽  
José Márcio de Mello ◽  
Fausto Weimar Acerbi Júnior ◽  
Aliny Aparecida dos Reis ◽  
Kieran Daniel Withey ◽  
...  

ABSTRACT Assuming a relationship between landscape heterogeneity and measures of spatial dependence by using remotely sensed data, the aim of this work was to evaluate the potential of semivariogram parameters, derived from satellite images with different spatial resolutions, to characterize landscape spatial heterogeneity of forested and human modified areas. The NDVI (Normalized Difference Vegetation Index) was generated in an area of Brazilian amazon tropical forest (1,000 km²). We selected samples (1 x 1 km) from forested and human modified areas distributed throughout the study area, to generate the semivariogram and extract the sill (σ²-overall spatial variability of the surface property) and range (φ-the length scale of the spatial structures of objects) parameters. The analysis revealed that image spatial resolution influenced the sill and range parameters. The average sill and range values increase from forested to human modified areas and the greatest between-class variation was found for LANDSAT 8 imagery, indicating that this image spatial resolution is the most appropriate for deriving sill and range parameters with the intention of describing landscape spatial heterogeneity. By combining remote sensing and geostatistical techniques, we have shown that the sill and range parameters of semivariograms derived from NDVI images are a simple indicator of landscape heterogeneity and can be used to provide landscape heterogeneity maps to enable researchers to design appropriate sampling regimes. In the future, more applications combining remote sensing and geostatistical features should be further investigated and developed, such as change detection and image classification using object-based image analysis (OBIA) approaches.


2019 ◽  
Vol 26 (3) ◽  
pp. 117
Author(s):  
Tri Muji Susantoro ◽  
Ketut Wikantika ◽  
Agung Budi Harto ◽  
Deni Suwardi

This study is intended to examine the growing phases and the harvest of sugarcane crops. The growing phases is analyzed with remote sensing approaches. The remote sensing data employed is Landsat 8. The vegetation indices of Normalized Difference Vegetation Index (NDVI) and Enhanced Normalized Difference Vegetation Index (ENDVI) are employed to analyze the growing phases and the harvest of sugarcane crops. Field survey was conducted in March and August 2017. The research results shows that March is the peak of the third phase (Stem elonging phase or grand growth phase), the period from May to July is the fourth phase (maturing or ripening phase), and the period from August to October is the peak of harvest. In January, the sugarcane crops begin to grow and some sugarcane crops enter the third phase again. The research results also found the sugarcane plants that do not grow well near the oil and gas field. This condition is estimated due as the impact of hydrocarbon microseepage. The benefit of this research is to identify the sugarcane growth cycle and harvest. Having knowing this, it will be easier to plan the seed development and crops transport.


Author(s):  
Ibra Lebbe Mohamed Zahir

Land Surface Temperature is a one of the key variable of Global climate changes and model which estimate radiating budget in heat balance as control of climate model. It is a major influenced factor by the ability of the surface emissivity. In this study, were used Landsat 8 satellite image that have Operational Land Imager and Thermal Infrared Sensor to calculate Land Surface Temperature through geospatial technology over Ampara district, Sri Lanka. The Land Surface Temperature was estimated with respect to Land Surface Emissivity and Normalized Difference Vegetation Index values determined from the Red and Near Infrared channels. Land Surface Emissivity was processed directly by the thermal Infrared bands. Pixels based calculation were used to effort at LANDSAT 8 images that thermal Band 10 various dates in this study. The results were achievable to compute Normalized Difference Vegetation Index, Land Surface Emissivity, and Land Surface Temperature with applicable manner to compare with land use/ land cover data. It determines and predicts the changes of surface temperature to favorable to decision making process for the society. Study area faces seasonal drought in Sri Lanka, the prediction method that how land can be efficiently used with the present condition. Therefore, the Land Surface Temperature estimation can prove whether new irrigation systems for agricultural activities or can transformed source of energy into useful form that introducing solar hubs for energy production in future.


2011 ◽  
Vol 3 (3) ◽  
pp. 157
Author(s):  
Daniel Rodrigues Lira ◽  
Maria do Socorro Bezerra de Araújo ◽  
Everardo Valadares De Sá Barretto Sampaio ◽  
Hewerton Alves da Silva

O mapeamento e monitoramento da cobertura vegetal receberam consideráveis impulsos nas últimas décadas, com o advento do sensoriamento remoto, processamento digital de imagens e políticas de combate ao desmatamento, além dos avanços nas pesquisas e gerações de novos sensores orbitais e sua distribuição de forma mais acessível aos usuários, tornam as imagens de satélite um dos produtos do sensoriamento remoto mais utilizado para análises da cobertura vegetal das terras. Os índices de cobertura vegetal deste trabalho foram obtidos usando o NDVI - Normalized Difference Vegetation Index para o Agreste central de Pernambuco indicou 39,7% de vegetação densa, 13,6% de vegetação esparsa, 14,3% de vegetação rala e 10,5% de solo exposto. O NDVI apresentou uma caracterização satisfatória para a classificação do estado da vegetação do ano de 2007 para o Agreste Central pernambucano, porém ocorreu uma confusão com os índices de nuvens, sombras e solos exposto, necessitando de uma adaptação na técnica para um melhor aprimoramento da diferenciação desses elementos, constituindo numa recombinação de bandas após a elaboração e calculo do NDVI.Palavras-chave: Geoprocessamento; sensoriamento remoto; índice de vegetação. Mapping and Quantification of Vegetation Cover from Central Agreste Region of Pernambuco State Using NDVI Technique ABSTRACTIn recent decades, advanced techniques for mapping and monitoring vegetation cover have been developed with the advent of remote sensing. New tools for digital processing, the generation of new sensors and their orbital distribution more accessible have facilitated the acquisition and use of satellite images, making them one of the products of remote sensing more used for analysis of the vegetation cover. The aim of this study was to assess the vegetation cover from Central Agreste region of Pernambuco State, using satellite images TM / LANDSAT-5. The images were processed using the NDVI (Normalized Difference Vegetation Index) technique, generating indexes used for classification of vegetation in dense, sparse and scattered. There was a proportion of 39.7% of dense vegetation, 13.6% of sparse vegetation, 14.3% of scattered vegetation and 10.5% of exposed soil. NDVI technique has been used as a useful tool in the classification of vegetation on a regional scale, however, needs improvement to a more precise differentiation among levels of clouds, shadow, exposed soils and vegetation. Keywords: Geoprocessing, remote sensing, vegetation index


2020 ◽  
Vol 11 (2) ◽  
pp. 94-110 ◽  
Author(s):  
Syed Riad Morshed Riad Morshed ◽  
Md. Abdul Fattah ◽  
Asma Amin Rimi ◽  
Md. Nazmul Haque

This research assessed the micro-level Land Surface Temperature (LST) dynamics in response to Land Cover Type Transformation (LCTT) at Khulna City Corporation Ward No 9, 14, 16 from 2001 to 2019, through raster-based analysis in geo-spatial environment. Satellite images (Landsat 5 TM and Landsat 8 OLI) were utilized to analyze the LCTT and its influences on LST change. Different indices like Normalized Difference Moisture Index (NDMI), Normalized Difference Vegetation Index (NDVI), Normalized Difference Buildup Index (NDBI) were adopted to show the relationship against the LST dynamics individually. Most likelihood supervised image classification and land cover change direction analysis shows that about 27.17%, 17.83% and 4.73% buildup area has increased at Ward No 9, 14, 16 correspondingly. On the other hand, the distribution of change in average LST shows that water, vacant land, and buildup area recorded the highest increase in temperature by 2.720C, 4.150C, 4.590C, respectively. The result shows the average LST increased from 25.800C to 27.150C in Ward No 9, 26.840C to 27.230C in Ward No 14 and 26.870C to 27.120C in Ward No 16. Here, the most responsible factor is the transformation of land cover in buildup areas.


Nativa ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 106-114
Author(s):  
Ewerton Medeiros Simões ◽  
Joedla Rodrigues de Lima ◽  
Izaque Francisco Candeia de Mendonça

No semiárido brasileiro, onde se insere o bioma caatinga, a precipitaçãos é um dos fator limitante para seu desenvolvimento sócioeconômico e ambiental, este estudo avaliou a correlação existente entre o nível de cobertura vegetal e as variáveis pluviométricas locais, considerando a climatologia de 2005 e 2015, utilizando-se imagens dos sensores TM e OLI dos satélites Landsat 5 e Landsat 8, respectivamente. O ano de 2005 apresentou maiores valores de NDVI em relação a 2015, com valores máximos de 0,71 e 0,78 no período seco e úmido, respectivamente. No ano de 2015, os valores máximos são de 0,64 e 0,61, para o período seco e úmido, respectivamente. Os maiores valores foram observados no período chuvoso de 2005, nas áreas de influência das estações meteorológicas de Matureia, Salgadinho e Areia de Baraúnas. No período seco, nota-se a baixa variabilidade dos valores de NDVI, sendo as maiores leituras observadas nas estações de Matureia, Salgadinho e Teixeira. As estações que apresentaram as maiores reduções nos valores de NDVI de 2005 para 2015, no período chuvoso, foram Matureia, Santa Teresinha e Salgadinho, com reduções de 41,9%, 38,2% e 32,7%, respectivamente. As correlações mais significativas foram estabelecidas para os períodos secos. As menores correlações foram verificadas no período chuvoso. A elevação dos níveis pluviométricos na região não implicou o aumento progressivo nos valores de NDVI. Palavras-chave: semiárido; geoprocessamento; índice de vegetação normalizada.   Normalized difference vegetation index associated with pluviometric variables for Espinharas River sub-basin - PB/RN States   ABSTRACT: In the Brazilian semiarid, where the caatinga biome is inserted, precipitation is a limiting factor for its socioeconomic and environmental development, This study evaluated the correlation between the level of vegetation cover and the local rainfall variables, considering the climatology of 2005 and 2015, using images from the TM and OLI sensors of the Landsat 5 and Landsat 8 satellites, respectively. The year 2005 presented higher NDVI values compared to 2015, with maximum values of 0.71 and 0.78 in the dry and wet periods, respectively. In 2015, the maximum values are 0.64 and 0.61, for the dry and wet periods, respectively. The highest values were observed in the rainy period of 2005, in the weather stations of Matureia, Salgadinho and Areia de Baraúnas. In the dry period, the low variability of NDVI values is noted, with the highest readings observed in the Matureia, Salgadinho and Teixeira platforms. The platforms that showed the greatest reductions in NDVI values from 2005 to 2015, in the rainy season, were Matureia, Santa Teresinha and Salgadinho, with reductions of 41.9%, 38.2% and 32.7%, respectively. The most significant correlations were established for the dry periods. The smallest correlations were found in the rainy season. The increase in rainfall levels in the region did not imply a progressive increase in NDVI values. Keywords: semiarid; geoprocessing; normalized difference vegetation index.


Author(s):  
O. Orhan ◽  
M. Yakar

The main purpose of this paper is to investigate multi-temporal land surface temperature (LST) and Normalized Difference Vegetation Index (NDVI) changes of Konya in Turkey using remotely sensed data. Konya is located in the semi-arid central Anatolian region of Turkey and hosts many important wetland sites including Salt Lake. Six images taken by Landsat-5 TM and Landsat 8- OLI satellites were used as the basic data source. These raw images were taken in 1984, 2011 and 2014 intended as long-term and short-term. Firstly, those raw images was corrected radiometric and geometrically within the scope of project. Three mosaic images were obtained by using the full-frame images of Landsat-5 TM / 8- OLI which had been already transformed comparison each other. Then, Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI) maps have been produced to determine the dimension of the drought. The obtained results showed that surface temperature rates in the basin increased about 5°C between 1984 and 2014 as long periods, increased about 2-3°C between 2011and 2014 as short periods. Meteorological data supports the increase in temperature.


Sign in / Sign up

Export Citation Format

Share Document