scholarly journals APPLICATION OF MULTISPECTRAL SATELLITE DATA FOR GEOLOGICAL MAPPING IN ANTARCTIC ENVIRONMENTS

Author(s):  
A. B. Pour ◽  
M. Hashim ◽  
J. K. Hong

Remote sensing imagery is capable to provide a solution to overcome the difficulties associated with geological field mapping in the Antarctic. Advanced optical and radar satellite imagery is the most applicable tool for mapping and identification of inaccessible regions in Antarctic. Consequently, an improved scientific research using remote sensing technology would be essential to provide new and more complete lithological and structural data to fill the numerous knowledge gaps on Antarctica’s geology. In this investigation, Oscar coast area in Graham Land, Antarctic Peninsula (AP) was selected to conduct a remote sensing study using Landsat-7 Thematic Mapper (TM), Landsat-8 and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Contrast-enhanced Red-Green-Blue (RGB) composites, band ratios and Relative Band Depth (RBD) image processing techniques were applied to Landsat-8 and ASTER dataset for establishing the spectral separation of the main lithologic groups exposed in the study area. The outcomes of this investigation demonstrated the applications of SWIR and TIR bands of the multispectral remote sensing datasets to identify lithological units and producing geological maps with suitable accuracy of ice-free rock regions in the Antarctic Peninsula. The results could be extended to map coverage of non-investigated regions further east and validated previously inferred geological observations concerning other rocks and mineral deposits throughout the Antarctica.

Author(s):  
A. B. Pour ◽  
M. Hashim ◽  
Y. Park

Geological investigations in Antarctica confront many difficulties due to its remoteness and extreme environmental conditions. In this study, the applications of Landsat-8 data were investigated to extract geological information for lithological and alteration mineral mapping in poorly exposed lithologies in inaccessible domains such in Antarctica. The north-eastern Graham Land, Antarctic Peninsula (AP) was selected in this study to conduct a satellite-based remote sensing mapping technique. Continuum Removal (CR) spectral mapping tool and Independent Components Analysis (ICA) were applied to Landsat-8 spectral bands to map poorly exposed lithologies at regional scale. Pixels composed of distinctive absorption features of alteration mineral assemblages associated with poorly exposed lithological units were detected by applying CR mapping tool to VNIR and SWIR bands of Landsat-8.Pixels related to Si-O bond emission minima features were identified using CR mapping tool to TIR bands in poorly mapped andunmapped zones in north-eastern Graham Land at regional scale. Anomaly pixels in the ICA image maps related to spectral featuresof Al-O-H, Fe, Mg-O-H and CO3 groups and well-constrained lithological attributions from felsic to mafic rocks were detectedusing VNIR, SWIR and TIR datasets of Landsat-8. The approach used in this study performed very well for lithological andalteration mineral mapping with little available geological data or without prior information of the study region.


2018 ◽  
Vol 14 (24) ◽  
pp. 350
Author(s):  
Abdessamad El Atillah ◽  
Zine El Abidine El Morjani ◽  
Mustapha Souhassou

Multiband space remote sensing is an indirect tool for prospecting the Earth's surface. It is very powerful especially in its applications related to the field of geology including geological mapping, mining and oil exploration. It can also significantly reduce the cost of exploration, reach inaccessible areas, guide mining research to favorable regions and reach a large surface. In this article, we highlight in details the state of knowledge in this field of research by citing the different methods and approaches carried out by several specialists who generally define the use of remote sensing for lithostructural and mineralogical mapping and particularly for the exploration and research of mineral substances. We also create methods derived from the aforementioned methods of treatment by means of a logical analogy between the different bands of several satellites of observation of the terrestrial globe, particularly between : Landsat 7 ETM +; Landsat 8 OLI / TIRS; Aster and Sentinel 2A. At the end, we synthesize these results by proposing a multispectral image-processing model that can be applied directly. This model starts with the calculation of Optimum Index Factor (OIF), which allows us to detect only the most important colored composites; and the reports of the bands, rations, the principal component analysis, ACI and the classification that allow the realization of a lithological and mineralogical mapping as well as maps of lineaments by means of directional filters. The validity of the models is tested by comparison with field data and geological maps of the studied site.


Author(s):  
M. W. Mwaniki ◽  
M. S. Moeller ◽  
G. Schellmann

Availability of multispectral remote sensing data cheaply and its higher spectral resolution compared to remote sensing data with higher spatial resolution has proved valuable for geological mapping exploitation and mineral mapping. This has benefited applications such as landslide quantification, fault pattern mapping, rock and lineament mapping especially with advanced remote sensing techniques and the use of short wave infrared bands. While Landsat and Aster data have been used to map geology in arid areas and band ratios suiting the application established, mapping in geology in highland regions has been challenging due to vegetation land cover. The aim of this study was to map geology and investigate bands suited for geological applications in a study area containing semi arid and highland characteristics. Therefore, Landsat 7 (ETM+, 2000) and Landsat 8 (OLI, 2014) were compared in determining suitable bands suited for geological mapping in the study area. The methodology consist performing principal component and factor loading analysis, IHS transformation and decorrelation stretch of the FCC with the highest contrast, band rationing and examining FCC with highest contrast, and then performing knowledge base classification. PCA factor loading analysis with emphasis on geological information showed band combination (5, 7, 3) for Landsat 7 and (6, 7, 4) for Landsat 8 had the highest contrast and more contrast was enhanced by performing decorrelation stretch. Band ratio combination (3/2, 5/1, 7/3) for Landsat 7 and (4/3, 6/2, 7/4) for Landsat 8 had more contrast on geologic information and formed the input data in knowledge base classification. Lineament visualisazion was achieved by performing IHS transformation of FCC with highest contrast and its saturation band combined as follows: Landsat 7 (IC1, PC2, saturation band), Landsat 8 (IC1, PC4, saturation band). The results were compared against existing geology maps and were superior and could be used to update the existing maps.


2018 ◽  
Vol 10 (8) ◽  
pp. 1186 ◽  
Author(s):  
Amin Beiranvand Pour ◽  
Tae-Yoon Park ◽  
Yongcheol Park ◽  
Jong Hong ◽  
Basem Zoheir ◽  
...  

Geological mapping and mineral exploration programs in the High Arctic have been naturally hindered by its remoteness and hostile climate conditions. The Franklinian Basin in North Greenland has a unique potential for exploration of world-class zinc deposits. In this research, multi-sensor remote sensing satellite data (e.g., Landsat-8, Phased Array L-band Synthetic Aperture Radar (PALSAR) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)) were used for exploring zinc in the trough sequences and shelf-platform carbonate of the Franklinian Basin. A series of robust image processing algorithms was implemented for detecting spatial distribution of pixels/sub-pixels related to key alteration mineral assemblages and structural features that may represent potential undiscovered Zn–Pb deposits. Fusion of Directed Principal Component Analysis (DPCA) and Independent Component Analysis (ICA) was applied to some selected Landsat-8 mineral indices for mapping gossan, clay-rich zones and dolomitization. Major lineaments, intersections, curvilinear structures and sedimentary formations were traced by the application of Feature-oriented Principal Components Selection (FPCS) to cross-polarized backscatter PALSAR ratio images. Mixture Tuned Matched Filtering (MTMF) algorithm was applied to ASTER VNIR/SWIR bands for sub-pixel detection and classification of hematite, goethite, jarosite, alunite, gypsum, chalcedony, kaolinite, muscovite, chlorite, epidote, calcite and dolomite in the prospective targets. Using the remote sensing data and approaches, several high potential zones characterized by distinct alteration mineral assemblages and structural fabrics were identified that could represent undiscovered Zn–Pb sulfide deposits in the study area. This research establishes a straightforward/cost-effective multi-sensor satellite-based remote sensing approach for reconnaissance stages of mineral exploration in hardly accessible parts of the High Arctic environments.


2018 ◽  
Vol 10 (3) ◽  
pp. 20
Author(s):  
Shrinidhi Ambinakudige ◽  
Pushkar Inamdar ◽  
Aynaz Lotfata

Snow cover helps regulate the temperature of the Earth's surface. Snowmelt recharges groundwater, provides run-off for rivers and creeks, and acts as a major source of local water for many communities around the world. Since 2000, there has been a significant decrease in the snow-covered area in the Northern Hemisphere. Climate change is the major factor influencing the change in snow cover amount and distribution. We analyze spectral properties of the remote sensing sensors with respect to the study of snow and examine how data from some of the major remote sensing satellite sensors, such as (Advanced Spaceborne Thermal Emission and Reflection Radiometer) ASTER, Landsat-8, and Sentinel-2, can be used in studying snow. The study was conducted in Mt. Rainier. Although reflectance values recorded were lower due to the timing of the data collection and the aspect of the study site, data can still be used calculate normalized difference snow index (NDSI) to clearly demarcate the snow from other land cover classes. NDSI values in all three satellites ranged from 0.94 to 0.97 in the snow-covered area of the study site. Any pollutants in snow can have a major influence on spectral reflectance in the VIS spectrum because pollutants absorb more than snow.


2019 ◽  
Vol 23 (4) ◽  
pp. 265-282
Author(s):  
Rafael Andrés Calderón-Chaparro ◽  
German Vargas-Cuervo

Geothermal resources (e.g. hot springs) are found with the help of field techniques, such as geological, geochemistry and geophysical. These techniques in some occasions are difficult to apply because of the limit access to the research area, rising operational costs and constrained spatially the exploration areas. The thermal infrared (TIR) remote sensing is an important tool for the exploration of geothermal resources, due to the low cost and high efficiency in the study of large geographic areas. The aim of this study is to use thermal imagery of satellite remote sensing and combined with geological-geophysical data, for spatial determination of exploratory prospects of hot springs in the geothermal region of Paipa, Boyacá. The images used in this study are from satellites Landsat-7 ETM+, Landsat-8 OLI/TIRS, MODIS, ALOS-PALSAR and Pléiades. Also, field data is used, such as soil temperature, surface temperature, air temperature, relative humidity, atmospheric pressure and thermal imagery of surface geothermal manifestations. The Landsat thermal bands were radiometrically calibrated, then atmospherically and surface emissivity corrected, applying single channel and split window algorithms, for Landsat-7 ETM+ and Landsat-8 TIRS, respectively. The field data helped to correct the thermal bands. And the soil temperature data are used to create a subsurface temperature map at 1-meter depth. Once primary and secondary data is had, in a geographic information system (GIS) is implemented an unweighted spatial model, which use four input indicators (satellite temperature index, soil temperature index, structural lineaments index and iso-resistivity index) to determine the areas with higher probability to find geothermal fluids. Six prospects are highlighted for hydrothermal fluid extraction, in which two of them are already known. Results allow to concluded that thermal remote sensing are useful to map geothermal anomalies in the Paipa region, and by using these anomalies plus geological-geophysical information is possible to determine exact exploration areas.


2019 ◽  
Vol 11 (1) ◽  
pp. 901-917
Author(s):  
Ngo Van Liem ◽  
Dang Van Bao ◽  
Dang Kinh Bac ◽  
Nguyen Hieu ◽  
Do Trung Hieu ◽  
...  

Abstract Cenozoic basalt regions contain various natural resources that can be used for socio-economic development. Different quantitative and qualitative methods have been applied to understand the geological and geomorphological characteristics of basalt formations. Nowadays the integration of remote sensing and geographic information systems (GIS) has become a powerful method to distinguish geological formations. In this paper, authors combined satellite and fieldwork data to analyze the structure and morphology of highland geological formations in order to distinguish two main volcanic eruption episodes. Based on remote sensing analysis in this study, different spectral band ratios were generated to select the best one for basalt classification. Lastly, two spectral combinations (including band ratios 4/3, 6/2, 7/4 in Landsat 8 and 3/2, 5/1, 7/3 in Landsat 7) were chosen for the Maximum Likelihood classification. The final geological map based on the integration of Landsat 7 and 8 outcomes shows precisely the boundary of the basalt formations with the accuracy up to 93.7%. This outcome contributed significantly to the correction of geological maps. In further studies, authors suggest the integration of Landsat 7 and 8 data in geological studies and natural resource and environmental management at both local and regional scales.


2004 ◽  
Vol 39 ◽  
pp. 525-530 ◽  
Author(s):  
Frank Rau ◽  
Fabian Mauz ◽  
Hernán De Angelis ◽  
Ricardo Jaña ◽  
Jorge Arigony Neto ◽  
...  

AbstractChanges in the ice fronts on the Antarctic Peninsula north of 70˚ S are currently being investigated through a comprehensive analysis of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Landsat Thematic Mapper (TM) data as part of the international research initiative ‘Global land Ice Measurements from Space’ (GLIMS). Regional case studies are presented that cover a variety of glacial systems distributed over the northern Antarctic Peninsula and provide data on glacier front variations during the period 1986–2002. The results confirm a general trend of regional glacier front recession, but a range of different glacier variations are observed throughout the study area. Areas of predominant retreat are located in the northeastern and southwestern sectors, while stationary ice fronts characterize glacial behaviour on the northwestern coast of the peninsula. In addition, a significant increase in glacier recession is identified on James Ross Island, where retreat rates doubled during the period 1988–2001 compared to the previous investigation period, 1975–88. These observations are interpreted as being direct consequences of the rapidly changing climate in the region, which differentially affects the local accumulation and ablation patterns of the glacial systems.


2020 ◽  
Author(s):  
Frazer Christie ◽  
Toby Benham ◽  
Julian Dowdeswell

<p>The Antarctic Peninsula is one of the most rapidly warming regions on Earth. There, the recent destabilization of the Larsen A and B ice shelves has been directly attributed to this warming, in concert with anomalous changes in ocean circulation. Having rapidly accelerated and retreated following the demise of Larsen A and B, the inland glaciers once feeding these ice shelves now form a significant proportion of Antarctica’s total contribution to global sea-level rise, and have become an exemplar for the fate of the wider Antarctic Ice Sheet under a changing climate. Together with other indicators of glaciological instability observable from satellites, abrupt pre-collapse changes in ice shelf terminus position are believed to have presaged the imminent disintegration of Larsen A and B, which necessitates the need for routine, close observation of this sector in order to accurately forecast the future stability of the Antarctic Peninsula Ice Sheet. To date, however, detailed records of ice terminus position along this region of Antarctica only span the observational period c.1950 to 2008, despite several significant changes to the coastline over the last decade, including the calving of giant iceberg A-68a from Larsen C Ice Shelf in 2017.</p><p>Here, we present high-resolution, annual records of ice terminus change along the entire western Weddell Sea Sector, extending southwards from the former Larsen A Ice Shelf on the eastern Antarctic Peninsula to the periphery of Filchner Ice Shelf. Terminus positions were recovered primarily from Sentinel-1a/b, TerraSAR-X and ALOS-PALSAR SAR imagery acquired over the period 2009-2019, and were supplemented with Sentinel-2a/b, Landsat 7 ETM+ and Landsat 8 OLI optical imagery across regions of complex terrain.</p><p>Confounding Antarctic Ice Sheet-wide trends of increased glacial recession and mass loss over the long-term satellite era, we detect glaciological advance along 83% of the ice shelves fringing the eastern Antarctic Peninsula between 2009 and 2019. With the exception of SCAR Inlet, where the advance of its terminus position is attributable to long-lasting ice dynamical processes following the disintegration of Larsen B, this phenomenon lies in close agreement with recent observations of unchanged or arrested rates of ice flow and thinning along the coastline. Global climate reanalysis and satellite passive-microwave records reveal that this spatially homogenous advance can be attributed to an enhanced buttressing effect imparted on the eastern Antarctic Peninsula’s ice shelves, governed primarily by regional-scale increases in the delivery and concentration of sea ice proximal to the coastline.</p>


Author(s):  
B. Kalantar ◽  
M. H. Ameen ◽  
H. J. Jumaah ◽  
S. J. Jumaah ◽  
A. A. Halin

Abstract. This work studies the meandering and change of paths along the Zab River in Iraq. Landsat-5 TM, Landsat-7 ETM+ and Landsat-8 (2-sets) images were acquired from the years 1989, 1999, 2015 and 2019, respectively, which were used together with Remote sensing and Geographic Information Systems (GIS) techniques to study the changes. To determine the river/stream shape, the Sinuosity Index was calculated to classify Zab River segments into either the straight, sinuous or meandering class. Our findings via image analysis show coarse river migration and that most river segments fall into the two classes of sinuous and meander. In addition, it seems that the east bank of the Zab River region of the basin has extremely shifted where the river passes near the Kirkuk governorate.


Sign in / Sign up

Export Citation Format

Share Document