scholarly journals INSAR COLLABORATIVE MONITORING MODE AND MULTI-MODE COMPUTING SERVICES FOR GEOHAZARDS IDENTIFICATION IN OPEN-PIT MINING AREA

Author(s):  
J. Zhang

Abstract. InSAR has developed a variety of methods, such as D-InSAR, PS-InSAR, MBAS, CT, SqueeSAR, POT, etc., which have been widely used in land subsidence monitoring. For open pit mining areas, there are usually mining activity, complex terrain features, low coherence, and local large deformation gradients, which makes it difficult for time series InSAR technology to obtain high-density surface deformation information in open pit mining areas. Traditional methods usually only monitor the linear deformation of the surface caused by the mining of a few working zone above the underground mining area, and the temporal and spatial resolution is lower. How to obtain high-precision, high-density, and time-sensitive deformation information is the main difficulty of InSAR monitoring in open pit mining areas. Make full use of the geosensor network monitoring system, optimize monitoring mode of collaborated satellite-to-ground based InSAR, further realize whole calculation and geographic information services, to achieve early identification and discovery of abnormal in large-area macro-monitoring, and accurate monitoring of local areas in real-time early warning, which is the development direction of ground deformation monitoring of mining areas. The study area is Pingshuo open pit mining area. we fully study the application mode and services of InSAR monitoring for geohazards in open-pit mining area, through the establishment of satellite InSAR technology system for large-scale macro-monitoring and forecasting, and GBSAR and GSN for local precision monitoring. The effective mode of InSAR monitoring of geohazard in open-pit mines is summarized. A combination of D-InSAR, POT (Pixel offset tracking), Time Series-InSAR and GB-SAR is used in a wide range, and high-resolution optical images are used to identify localized changes in subsidence areas and open-pit mining areas.

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Rongxing He ◽  
Jing Zhang ◽  
Yang Liu ◽  
Delin Song ◽  
Fengyu Ren

Continuous mining of metal deposits leads the overlying strata to move, deform, and collapse, which is particularly obvious when open-pit mining and underground mining are adjacent. Once the mining depth of the adjacent open-pit lags severely behind the underground, the ultimate underground mining depth needs to be studied before the surface deformation extends to the open-pit mining area. The numerical simulation and the mechanical model are applied to research the ultimate underground mining depth of the southeast mining area in the Gongchangling Iron mine. In the numerical simulation, the effect of granular rock is considered and the granular rock in the collapse pit is simplified as the degraded rock mass. The ultimate underground mining depth can be obtained by the values of the indicators of surface movement and deformation. In the mechanical model, the modified mechanical model for the progressive hanging wall caving is established based on Hoke’s conclusion, which considers the lateral pressure of the granular rock. Using the limiting equilibrium analysis, the relationship of the ultimate underground mining depth and the range of surface caving can be derived. The results show that the ultimate underground mining depth obtained by the numerical simulation is greater than the theoretical calculation of the modified mechanical model. The reason for this difference may be related to the assumption of the granular rock in the numerical simulation, which increases the resistance of granular rock to the deformation of rock mass. Therefore, the ultimate underground mining depth obtained by the theoretical calculation is suggested. Meanwhile, the surface displacement monitoring is implemented to verify the reasonability of the ultimate underground mining depth. Monitoring results show that the indicators of surface deformation are below the critical value of dangerous movement when the underground is mined to the ultimate mining depth. The practice proves that the determination of the ultimate underground mining depth in this work can ensure the safety of the open-pit and underground synergetic mining.


2020 ◽  
Vol 12 (22) ◽  
pp. 3759
Author(s):  
Baodong Ma ◽  
Xuexin Li ◽  
Ziwei Jiang ◽  
Ruiliang Pu ◽  
Aiman Liang ◽  
...  

Dust pollution is severe in some mining areas in China due to rapid industrial development. Dust deposited on the vegetation canopy may change its spectra. However, a relationship between canopy spectra and dust amount has not been quantitatively studied, and a pixel-scale condition for remote sensing application has not been considered yet. In this study, the dust dispersion characteristics in an iron mining area were investigated using the American Meteorological Society (AMS) and the U.S. Environmental Protection Agency (EPA) regulatory model (AERMOD). Further, based on the three-dimensional discrete anisotropic radiative transfer (DART) model, the spectral characteristics of vegetation canopy under the dusty condition were simulated, and the influence of dustfall on vegetation canopy spectra was studied. Finally, the dust effect on vegetation spectra at the canopy scale was extended to a pixel scale, and the response of dust effect on vegetation spectra at the pixel scale was determined under different fractional vegetation covers (FVCs). The experimental results show that the dust pollution along a haul road was more severe and extensive than that in a stope. Taking dust dispersion along the road as an example, the variation of vegetation canopy spectra increased with the height of dust deposited on the vegetation canopy. At the pixel scale, a lower vegetation FVC would weaken the influence of dust on the spectra. The results derived from simulation spectral data were tested using satellite remote sensing images. The tested result indicates that the influence of dust retention on the pixel spectra with different FVCs was consistent with that created with the simulated data. The finding could be beneficial for those making decisions on monitoring vegetation under dusty conditions and reducing dust pollution in mining areas using remote sensing technology.


2018 ◽  
Author(s):  
Zhang Jin

Geohazards in mining areas are mainly ground subsidence, slope landslides and ground cracks, surface cover degradation and environmental ecological pattern destruction. The classification and rank of terrain slope and the feature area extraction of the slope are the important content for the correlation analysis with the geohazards. The slope classification and rank index system for soil and water conservation, land use and man-made ground disasters was analyzed. According to the characteristics of open pit and underground associated mining area, we comprehensively analyzed the spatial correlation between different ground disaster and terrain features and landform types, and propose a new slope ranking index, dividing slope zones and forming slope classification map. Especially slope area of 35-45 degrees and more than 45 degrees was extracted, and the relationship between regional geohazards and slope zone was analyzed. The application of terrestrial laser scanning technology to establish open-pit high precision digital elevation model, extraction of slope, slope type, gully density characteristic factor, topography factor data sets are established, and correlation analysis, to enhance disaster information content.


Author(s):  
Ling Zhang ◽  
Daqing Ge ◽  
Xiaofang Guo ◽  
Bin Liu ◽  
Man Li ◽  
...  

Abstract. Land subsidence can be caused by underground mining activities. Interferometric Synthetic Aperture Radar (InSAR) has became an economic, effective and accurate technique for land deformation survey and monitoring. In mining areas, there may be several factors to overcome for the succsessful application of InSAR, such as temporal decorrelation and detectable deformation gradient, that limit the ability of InSAR to monitoring rapid land subsidence. In this paper, images obtained by the Sentinel-1 satellite with 6 or 12 d revisiting time are used to improve the ability to detect a deformation gradient, and reduce the influence of temporal decorrelation. By combining Small Baseline Subsets (SBAS) and Interferometric Point Target Analysis (IPTA) methods, using the Nanhu mining area in Tangshan as an example, the spatial continuous results of land subsidence in this mining area are obtained with a 70 cm per year maximum rate, which clearly characterizes the deformation field and its deformation process. The results show that InSAR is a useful way to monitor land subsidence in a mining area and provides further data for environment mine restoration.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jiaqi Jin ◽  
Chicheng Yan ◽  
Yixuan Tang ◽  
Yilong Yin

Along with the accelerated shift of coal mining to the ecologically fragile west, the contradiction between coal resource development and ecological protection in the western arid and semiarid coal mining areas is rapidly intensifying. Based on the above background, this thesis takes the coal mining area in the arid and semiarid regions as an example; applies the theories of ecology, coal mining subsidence, geodesy, and ecological restoration; uses remote sensing in synthetic aperture radar (SAR), geographic information system (GIS), and mathematical modelling to reveal the ecological evolution law of the mining area; measures the ecological damage of the mining area; and then proposes a reasonable ecological restoration strategy. The surface deformation monitoring study in the study area shows that on the whole, some areas in the study area have different degrees of surface subsidence disasters, and the maximum surface subsidence value exceeds 800 mm. From the distribution of surface subsidence in the study area, surface subsidence disasters mainly occur in the eastern and central mountainous areas rich in coal resources, as well as in the mining areas west of the Yellow River, and the subsidence basins are distributed in a series of irregular concentric ovals. In terms of the scale of surface subsidence in the study area, a total of 230.03 km2 of land in the study area showed surface subsidence hazards during the monitoring period, accounting for 13.78% of the total area of the study area, of which the area of severe subsidence was 44.98 km2 (2.69%). The area of more serious subsidence area is 101.33 km2 (6.07%), and the area affected by subsidence is 83.72 km2 (5.01%).


2020 ◽  
Vol 12 (10) ◽  
pp. 1612 ◽  
Author(s):  
Wu Xiao ◽  
Xinyu Deng ◽  
Tingting He ◽  
Wenqi Chen

The development and utilization of mining resources are basic requirements for social and economic development. Both open-pit mining and underground mining have impacts on land, ecology, and the environment. Of these, open-pit mining is considered to have the greatest impact due to the drastic changes wrought on the original landform and the disturbance to vegetation. As awareness of environmental protection has grown, land reclamation has been included in the mining process. In this study, we used the Shengli Coalfield in the eastern steppe region of Inner Mongolia to demonstrate a mining and reclamation monitoring process. We combined the Google Earth Engine platform with time series Landsat images and the LandTrendr algorithm to identify and monitor mining disturbances to grassland and land reclamation in open-pit mining areas of the coalfield between 2003 and 2019. Pixel-based trajectories were used to reconstruct the temporal evolution of vegetation, and sequential Landsat archive data were used to achieve accurate measures of disturbances to vegetation. The results show that: (1) the proposed method can be used to determine the years in which vegetation disturbance and recovery occurred with accuracies of 86.53% and 78.57%, respectively; (2) mining in the Shengli mining area resulted in the conversion of 89.98 km2 of land from grassland, water, etc., to barren earth, and only 23.54 km2 was reclaimed, for a reclamation rate of 26.16%; and (3) the method proposed in this paper can achieve fast, efficient identification of surface mining land disturbances and reclamation, and has the potential to be applied to other similar areas.


2016 ◽  
Vol 38 (3) ◽  
pp. 35-48 ◽  
Author(s):  
Phu Minh Vuong Nguyen ◽  
Zbigniew Niedbalski

Abstract The primary objective of the present paper is an attempt at evaluating the influence of sub-level caving operations on the slope stability of a still-functioning open pit coal mine in Vietnam. Initially, various methods of predicting the impact of underground mining on surface stability are discussed. Those theoretical considerations were later utilized in the process of constructing a Flac-2D-software-based numerical model for calculating the influence of underground operation on the deformation and possible loss of stability of an open pit slope. The numerical analysis proved that the values of open pit slope displacements were affected mainly by underground exploitation depth, direction of operation (i.e., from one slope to the other) and the distance from the slope plane. Real geomechanical strata parameters from the Vietnamese coal basin of Cam Pha were used in the modeling process. The paper is, therefore, a critical review of the hitherto proposed methods of predicting the impact of underground operation (UG) on open pit mining (OP), illustrated with selected examples of case studies on OP-UG interaction, followed by an original experiment based on numerical modeling method. This is first such study for the genuine conditions of the coal mining in Vietnam. The obtained results, however, should not be generalized due to a highly specific character of the analyzed phenomenon of mining-induced surface deformation. The practical implications of the study may occur extremely useful in the case of an UG-OP transition. Such a transition is often necessary for both technical and economical reasons, as in some coal basins open pit operations at greater depths occur unfeasible, which calls for a proper selection of parameters for a planned underground operation.


2020 ◽  
Vol 174 ◽  
pp. 01003
Author(s):  
Eugene Plotnikov ◽  
Valery Kolesnikov ◽  
Zuzana Šimková ◽  
Nuray Demirel

At a number of large open pit mines in Kuzbass, coal production costs have increased due to the deepening of mining operations. In order to reduce them, separate sections of coal mining at the upper horizons are operating or are being designed for mining at low current stripping ratio. For the same purpose, open-pit mining areas at the fields of existing quarries are operated and designed. Examples of such existing and projected areas are: the “Complex Synclinal” area at the Krasnobrodsky surface mine; the “Prirezka” area at the Chernigovsky surface mine; a number open-pit areas at the underground mines; etc. The main factors complicating the involvement in the development of new sites are: the presence of residential areas, industrial buildings and structures near the boundaries of the mining area; power supply lines, transport communications, which limits or excludes the production of mass explosions in the preparation of overburden for excavation; limited size or lack of areas for external dumps at a short distance from the site (in some cases, it is possible to close the mined-out space of the worked-out quarry field). When designing the development of areas characterized by such conditions, it is necessary to consider the application of new technical and technological solutions.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2089
Author(s):  
Meng Li ◽  
Zhuang Tang ◽  
Wei Tong ◽  
Xianju Li ◽  
Weitao Chen ◽  
...  

Fine-scale land use and land cover (LULC) data in a mining area are helpful for the smart supervision of mining activities. However, the complex landscape of open-pit mining areas severely restricts the classification accuracy. Although deep learning (DL) algorithms have the ability to extract informative features, they require large amounts of sample data. As a result, the design of more interpretable DL models with lower sample demand is highly important. In this study, a novel multi-level output-based deep belief network (DBN-ML) model was developed based on Ziyuan-3 imagery, which was applied for fine classification in an open-pit mine area of Wuhan City. First, the last DBN layer was used to output fine-scale land cover types. Then, one of the front DBN layers outputted the first-level land cover types. The coarse classification was easier and fewer DBN layers were sufficient. Finally, these two losses were weighted to optimize the DBN-ML model. As the first-level class provided a larger amount of additional sample data with no extra cost, the multi-level output strategy enhanced the robustness of the DBN-ML model. The proposed model produces an overall accuracy of 95.10% and an F1-score of 95.07%, outperforming some other models.


2018 ◽  
Author(s):  
Zhang Jin

Geohazards in mining areas are mainly ground subsidence, slope landslides and ground cracks, surface cover degradation and environmental ecological pattern destruction. The classification and rank of terrain slope and the feature area extraction of the slope are the important content for the correlation analysis with the geohazards. The slope classification and rank index system for soil and water conservation, land use and man-made ground disasters was analyzed. According to the characteristics of open pit and underground associated mining area, we comprehensively analyzed the spatial correlation between different ground disaster and terrain features and landform types, and propose a new slope ranking index, dividing slope zones and forming slope classification map. Especially slope area of 35-45 degrees and more than 45 degrees was extracted, and the relationship between regional geohazards and slope zone was analyzed. The application of terrestrial laser scanning technology to establish open-pit high precision digital elevation model, extraction of slope, slope type, gully density characteristic factor, topography factor data sets are established, and correlation analysis, to enhance disaster information content.


Sign in / Sign up

Export Citation Format

Share Document