scholarly journals A MATLAB GEODETIC SOFTWARE FOR PROCESSING AIRBORNE LIDAR BATHYMETRY DATA

Author(s):  
M. Pepe ◽  
G. Prezioso

The ability to build three-dimensional models through technologies based on satellite navigation systems GNSS and the continuous development of new sensors, as Airborne Laser Scanning Hydrography (ALH), data acquisition methods and 3D multi-resolution representations, have contributed significantly to the digital 3D documentation, mapping, preservation and representation of landscapes and heritage as well as to the growth of research in this fields. <br><br> However, GNSS systems led to the use of the ellipsoidal height; to transform this height in orthometric is necessary to know a geoid undulation model. The latest and most accurate global geoid undulation model, available worldwide, is EGM2008 which has been publicly released by the U.S. National Geospatial-Intelligence Agency (NGA) EGM Development Team. Therefore, given the availability and accuracy of this geoid model, we can use it in geomatics applications that require the conversion of heights. Using this model, to correct the elevation of a point does not coincide with any node must interpolate elevation information of adjacent nodes. <br><br> The purpose of this paper is produce a Matlab® geodetic software for processing airborne LIDAR bathymetry data. In particular we want to focus on the point clouds in ASPRS LAS format and convert the ellipsoidal height in orthometric. The algorithm, valid on the whole globe and operative for all UTM zones, allows the conversion of ellipsoidal heights using the EGM2008 model. Of this model we analyse the slopes which occur, in some critical areas, between the nodes of the undulations grid; we will focus our attention on the marine areas verifying the impact that the slopes have in the calculation of the orthometric height and, consequently, in the accuracy of the in the 3-D point clouds. This experiment will be carried out by analysing a LAS APRS file containing topographic and bathymetric data collected with LIDAR systems along the coasts of Oregon and Washington (USA).

2021 ◽  
Vol 13 (3) ◽  
pp. 507
Author(s):  
Tasiyiwa Priscilla Muumbe ◽  
Jussi Baade ◽  
Jenia Singh ◽  
Christiane Schmullius ◽  
Christian Thau

Savannas are heterogeneous ecosystems, composed of varied spatial combinations and proportions of woody and herbaceous vegetation. Most field-based inventory and remote sensing methods fail to account for the lower stratum vegetation (i.e., shrubs and grasses), and are thus underrepresenting the carbon storage potential of savanna ecosystems. For detailed analyses at the local scale, Terrestrial Laser Scanning (TLS) has proven to be a promising remote sensing technology over the past decade. Accordingly, several review articles already exist on the use of TLS for characterizing 3D vegetation structure. However, a gap exists on the spatial concentrations of TLS studies according to biome for accurate vegetation structure estimation. A comprehensive review was conducted through a meta-analysis of 113 relevant research articles using 18 attributes. The review covered a range of aspects, including the global distribution of TLS studies, parameters retrieved from TLS point clouds and retrieval methods. The review also examined the relationship between the TLS retrieval method and the overall accuracy in parameter extraction. To date, TLS has mainly been used to characterize vegetation in temperate, boreal/taiga and tropical forests, with only little emphasis on savannas. TLS studies in the savanna focused on the extraction of very few vegetation parameters (e.g., DBH and height) and did not consider the shrub contribution to the overall Above Ground Biomass (AGB). Future work should therefore focus on developing new and adjusting existing algorithms for vegetation parameter extraction in the savanna biome, improving predictive AGB models through 3D reconstructions of savanna trees and shrubs as well as quantifying AGB change through the application of multi-temporal TLS. The integration of data from various sources and platforms e.g., TLS with airborne LiDAR is recommended for improved vegetation parameter extraction (including AGB) at larger spatial scales. The review highlights the huge potential of TLS for accurate savanna vegetation extraction by discussing TLS opportunities, challenges and potential future research in the savanna biome.


Author(s):  
Xiankun Wang ◽  
Fanlin Yang ◽  
Hande Zhang ◽  
Dianpeng Su ◽  
Zhiliang Wang ◽  
...  

2021 ◽  
Vol 13 (16) ◽  
pp. 3124
Author(s):  
Jakob Raschhofer ◽  
Gabriel Kerekes ◽  
Corinna Harmening ◽  
Hans Neuner ◽  
Volker Schwieger

A flexible approach for geometric modelling of point clouds obtained from Terrestrial Laser Scanning (TLS) is by means of B-splines. These functions have gained some popularity in the engineering geodesy as they provide a suitable basis for a spatially continuous and parametric deformation analysis. In the predominant studies on geometric modelling of point clouds by B-splines, uncorrelated and equally weighted measurements are assumed. Trying to overcome this, the elementary errors theory is applied for establishing fully populated covariance matrices of TLS observations that consider correlations in the observed point clouds. In this article, a systematic approach for establishing realistic synthetic variance–covariance matrices (SVCMs) is presented and afterward used to model TLS point clouds by B-splines. Additionally, three criteria are selected to analyze the impact of different SVCMs on the functional and stochastic components of the estimation results. Plausible levels for variances and covariances are obtained using a test specimen of several dm—dimension. It is used to identify the most dominant elementary errors under laboratory conditions. Starting values for the variance level are obtained from a TLS calibration. The impact of SVCMs with different structures and different numeric values are comparatively investigated. Main findings of the paper are that for the analyzed object size and distances, the structure of the covariance matrix does not significantly affect the location of the estimated surface control points, but their precision in terms of the corresponding standard deviations. Regarding the latter, properly setting the main diagonal terms of the SVCM is of superordinate importance compared to setting the off-diagonal ones. The investigation of some individual errors revealed that the influence of their standard deviation on the precision of the estimated parameters is primarily dependent on the scanning distance. When the distance stays the same, one-sided influences on the precision of the estimated control points can be observed with an increase in the standard deviations.


2020 ◽  
Vol 9 (9) ◽  
pp. 528 ◽  
Author(s):  
Serdar Erol ◽  
Emrah Özögel ◽  
Ramazan Alper Kuçak ◽  
Bihter Erol

This investigation evaluates the performance of digital terrain models (DTMs) generated in different vertical datums by aerial LiDAR and unmanned aerial vehicle (UAV) photogrammetry techniques, for the determination and validation of local geoid models. Many engineering projects require the point heights referring to a physical surface, i.e., geoid, rather than an ellipsoid. When a high-accuracy local geoid model is available in the study area, the physical heights are practically obtained with the transformation of global navigation satellite system (GNSS) ellipsoidal heights of the points. Besides the commonly used geodetic methods, this study introduces a novel approach for the determination and validation of the local geoid surface models using photogrammetry. The numeric tests were carried out in the Bergama region, in the west of Turkey. Using direct georeferenced airborne LiDAR and indirect georeferenced UAV photogrammetry-derived point clouds, DTMs were generated in ellipsoidal and geoidal vertical datums, respectively. After this, the local geoid models were calculated as differences between the generated DTMs. Generated local geoid models in the grid and pointwise formats were tested and compared with the regional gravimetric geoid model (TG03) and a high-resolution global geoid model (EIGEN6C4), respectively. In conclusion, the applied approach provided sufficient performance for modeling and validating the geoid heights with centimeter-level accuracy.


2012 ◽  
Vol 226-228 ◽  
pp. 1892-1898
Author(s):  
Jian Qing Shi ◽  
Ting Chen Jiang ◽  
Ming Lian Jiao

Airborne LiDAR is a new kind of surveying technology of remote sensing which developed rapidly during recent years. Raw laser scanning point clouds data include terrain points, building points, vegetation points, outlier points, etc.. In order to generate digital elevation model (DEM) and three-dimensional city model,these point clouds data must be filtered. Mathematical morphology based filtering algorithm, slope based filtering algorithm, TIN based filtering algorithm, moving surface based filtering algorithm, scanning lines based filtering algorithm and so on several representative filtering algorithms for LiDAR point clouds data have been introduced and discussed and contrasted in this paper. Based on these algorithms summarize the studying progresss about the filtering algorithm of airborne LiDAR point clouds data in home and abroad. In the end, the paper gives an expectation which will provides a reference for the following relative study.


2018 ◽  
Vol 10 (9) ◽  
pp. 1403 ◽  
Author(s):  
Jianwei Wu ◽  
Wei Yao ◽  
Przemyslaw Polewski

To meet a growing demand for accurate high-fidelity vegetation cover mapping in urban areas toward biodiversity conservation and assessing the impact of climate change, this paper proposes a complete approach to species and vitality classification at single tree level by synergistic use of multimodality 3D remote sensing data. So far, airborne laser scanning system(ALS or airborne LiDAR) has shown promising results in tree cover mapping for urban areas. This paper analyzes the potential of mobile laser scanning system/mobile mapping system (MLS/MMS)-based methods for recognition of urban plant species and characterization of growth conditions using ultra-dense LiDAR point clouds and provides an objective comparison with the ALS-based methods. Firstly, to solve the extremely intensive computational burden caused by the classification of ultra-dense MLS data, a new method for the semantic labeling of LiDAR data in the urban road environment is developed based on combining a conditional random field (CRF) for the context-based classification of 3D point clouds with shape priors. These priors encode geometric primitives found in the scene through sample consensus segmentation. Then, single trees are segmented from the labelled tree points using the 3D graph cuts algorithm. Multinomial logistic regression classifiers are used to determine the fine deciduous urban tree species of conversation concern and their growth vitality. Finally, the weight-of-evidence (WofE) based decision fusion method is applied to combine the probability outputs of classification results from the MLS and ALS data. The experiment results obtained in city road corridors demonstrated that point cloud data acquired from the airborne platform achieved even slightly better results in terms of tree detection rate, tree species and vitality classification accuracy, although the tree vitality distribution in the test site is less balanced compared to the species distribution. When combined with MLS data, overall accuracies of 78% and 74% for tree species and vitality classification can be achieved, which has improved by 5.7% and 4.64% respectively compared to the usage of airborne data only.


Author(s):  
Mónica Herrero-Huertaa ◽  
Roderik Lindenbergh ◽  
Luc Ponsioen ◽  
Myron van Damme

Emergence of light detection and ranging (LiDAR) technology provides new tools for geomorphologic studies improving spatial and temporal resolution of data sampling hydrogeological instability phenomena. Specifically, terrestrial laser scanning (TLS) collects high resolution 3D point clouds allowing more accurate monitoring of erosion rates and processes, and thus, quantify the geomorphologic change on vertical landforms like dike landside slopes. Even so, TLS captures observations rapidly and automatically but unselectively. &lt;br&gt;&lt;br&gt; In this research, we demonstrate the potential of TLS for morphological change detection, profile creation and time series analysis in an emergency simulation for characterizing and monitoring slope movements in a dike. The experiment was performed near Schellebelle (Belgium) in November 2015, using a Leica Scan Station C10. Wave overtopping and overflow over a dike were simulated whereby the loading conditions were incrementally increased and 14 successful scans were performed. The aim of the present study is to analyse short-term morphological dynamic processes and the spatial distribution of erosion and deposition areas along a dike landside slope. As a result, we are able to quantify the eroded material coming from the impact on the terrain induced by wave overtopping which caused the dike failure in a few minutes in normal storm scenarios (Q = 25 l/s/m) as 1.24 m&lt;sup&gt;3&lt;/sup&gt;. As this shows that the amount of erosion is measurable using close range techniques; the amount and rate of erosion could be monitored to predict dike collapse in emergency situation. &lt;br&gt;&lt;br&gt; The results confirm the feasibility of the proposed methodology, providing scalability to a comprehensive analysis over a large extension of a dike (tens of meters).


Author(s):  
N. Amiri ◽  
M. Heurich ◽  
P. Krzystek ◽  
A. K. Skidmore

The presented experiment investigates the potential of Multispectral Laser Scanning (MLS) point clouds for single tree species classification. The basic idea is to simulate a MLS sensor by combining two different Lidar sensors providing three different wavelngthes. The available data were acquired in the summer 2016 at the same date in a leaf-on condition with an average point density of 37&amp;thinsp;points/m<sup>2</sup>. For the purpose of classification, we segmented the combined 3D point clouds consisiting of three different spectral channels into 3D clusters using Normalized Cut segmentation approach. Then, we extracted four group of features from the 3D point cloud space. Once a varity of features has been extracted, we applied forward stepwise feature selection in order to reduce the number of irrelevant or redundant features. For the classification, we used multinomial logestic regression with <i>L<sub>1</sub></i> regularization. Our study is conducted using 586 ground measured single trees from 20 sample plots in the Bavarian Forest National Park, in Germany. Due to lack of reference data for some rare species, we focused on four classes of species. The results show an improvement between 4&amp;ndash;10&amp;thinsp;pp for the tree species classification by using MLS data in comparison to a single wavelength based approach. A cross validated (15-fold) accuracy of 0.75 can be achieved when all feature sets from three different spectral channels are used. Our results cleary indicates that the use of MLS point clouds has great potential to improve detailed forest species mapping.


Author(s):  
K. Bakuła ◽  
M. Pilarska ◽  
W. Ostrowski ◽  
A. Nowicki ◽  
Z. Kurczyński

Abstract. This article presents the results of studies related to the impact of flight altitude of UAV equipped with lidar data on geometric and radiometric information. Experiments were conducted in two test areas by performing UAV test flight missions at different UAV Laser Scanner (ULS) altitudes. The results were compared to other parameters describing the point clouds in order to answer the questions related to their genesis and evaluation of a product from such high-resolution datasets. The accuracy of the elevation models was assessed on the basis of control points measured with GNSS RTK and Terrestrial Laser Scanning (TLS). Accuracy was assessed by statistical parameters and differential digital elevation models. The second issue raised in this work is the study of the decrease in radiometric value with an increase in platform elevation. The results of this work clearly indicate the very low impact of platform altitude on DTM vertical error. In presented works the suggestion about DTM resolution and interpolation method are provided. Moreover, the influence of flight height on the reflectance and intensity is notable, however, its impact is related more with the details and resolution of the raster than radiometric values considering the possibility of radiometric calibration of the intensity.


2018 ◽  
Vol 8 (2) ◽  
pp. 89-96 ◽  
Author(s):  
J. Siwiec

Abstract Along with the development of the technology of drone construction (UAV - Unmanned Aerial Vehicles), the number of applications of these solutions in the industry also grew. The aim of the research is to check the accuracy of data obtained using the new technology of UAV scanning and to compare them with one that is widely spread - high-altitude airborne Lidar, in terms of quality and spectrum of applications in industry and infrastructure. The research involved two infrastructure objects: a reinforced concrete one-span bridge and Lattice transmission tower with powerlines. The density of measurement, internal and external cohesion of point clouds obtained from both methods were compared. Plane fitting and deviation analysis were used. The data of UAV origin in both cases provided a sufficient density, allowing the recognition of structural elements, and internal coherence and precision of measurements important in modeling. The study shows that UAV mounted scanning may be used in the same applications as Airborne Lidar, as well as in other tasks requiring greater precision.


Sign in / Sign up

Export Citation Format

Share Document