scholarly journals 3D Recording methodology applied to the Grotta Scritta Prehistoric Rock-Shelter in Olmeta-Di-Capocorso (Corsica, France)

Author(s):  
P. Grussenmeyer ◽  
A. Burens ◽  
S. Guillemin ◽  
E. Alby ◽  
F. Allegrini Simonetti ◽  
...  

The Grotta Scritta I prehistoric site is located on the west side of Cap Corse, in the territory of the municipality of Olmeta-di- Capocorso (Haute-Corse, France). This rock shelter is located on a western spur of the mountains La Serra, at 412 m height above sea level. In the regional context of a broad set of megalithic burial sites (regions Nebbiu and Agriates) and a rich insular prehistoric rock art with several engraved patterns (mainly geometric), the Grotta Scritta is the only site with painted depictions of Corsica. Around twenty parietal depictions are arranged in the upper part of the rock-shelter and takes advantage of the microtopography of the wall. Today, the Grotta Scritta is a vulnerable site, made fragile by the action of time and man. The 3D scanning of the rockshelter and paintings of the Grotta Scritta was carried out by surveyors and archaeologists from INSA Strasbourg and from UMR 5602 GEODE (Toulouse), by combining accurate terrestrial laser scanning and photogrammetry techniques. These techniques are based on a full 3D documentation without contact of the rock-shelter paintings. The paper presents the data acquisition methodology followed by an overview of data processing solutions based on both imaging and laser scanning. Several deliverables as point clouds, meshed models, textured models and orthoimages are proposed for the documentation. Beyond their usefulness in terms of valorization, communication and virtual restitution, the proposed models also provide support tools for the analysis and perception of the complexity of the volumes of the shelter (namely for the folded forms of the dome housing the paintings) as well as for the accuracy of the painted depictions recorded on the orthophotos processed from the 3D model.

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2355
Author(s):  
Paula Redweik ◽  
José Juan de Sanjosé Blasco ◽  
Manuel Sánchez-Fernández ◽  
Alan D. Atkinson ◽  
Luís Francisco Martínez Corrales

The Tower of Belém, an early 16th century defense tower located at the mouth of the Tagus river, is the iconic symbol of Lisbon. It belongs to the Belém complex, classified since 1983 as a World Heritage Site by the UNESCO, and it is the second most visited monument in Portugal. On November 1st, 1755, there was a heavy earthquake in Lisbon followed by a tsunami, causing between 60,000 and 100,000 deaths. There is a possibility of a repetition of such a catastrophe, which could bring about the collapse of the structure. This was the reasoning behind the decision to evaluate the Tower of Belém by means of surveys using Terrestrial Laser Scanning and photogrammetry. Until now, there was no high-resolution 3D model of the interior and exterior of the tower. A complete 3D documentation of the state of the Tower was achieved with a cloud of more than 6,200 million 3D points in the ETRS89 PT-TM06 coordinate system. Additionally, measurements were made using a hyperspectral camera and a spectroradiometer to characterize the stone material used in the Tower. The result is a digital 3D representation of the Tower of Belém, and the identification of the quarries that may have been used to extract its stone. The work carried out combines geometrical and material analysis. The methods used may constitute a guide when documenting and intervening in similar heritage elements. Finally, the information contained therein will allow an eventual reconstruction of the Tower in the case of another catastrophe.


Author(s):  
A. T. Mozas-Calvache ◽  
J. L. Pérez-García ◽  
J. M. Gómez-López ◽  
J. L. Martínez de Dios ◽  
A. Jiménez-Serrano

Abstract. This paper describes the methodology employed to obtain 3D models of three funerary complexes (QH31, QH32 and QH33) of the Necropolis of Qubbet el Hawa (Aswan, Egypt) and the main results obtained. These rock-cut tombs are adjacent structures defined by complex geometries such as chambers, corridors and vertical shafts. The main goal of this study was to discover the spatial relationships between them and obtain a complete 3D model. In addition, some models with realistic textures of the burial chambers were demanded in order to analyse archaeological, architectural and geological aspects. The methodology was based on the use of Terrestrial Laser Scanning and Close Range Photogrammetry. In general, both techniques were developed in parallel for each tomb. Some elements presented difficulties because of their reduced dimensions, the presence of vertical falls, some objects stored in the tombs that generated occlusions of some walls, coincidence of other workers, poor illumination conditions, etc. The results included three complete 3D models obtained without texture and some parts of interest obtained with real textures. All models were merged into a global 3D model. The information extracted from this product has helped architects and archaeologists to contrast their premises about the spatial behaviour of the tombs. The results have also allowed the obtaining of the first 3D documentation of these tombs under the same reference system, allowing them to be studied completely. This information is very important for documentation purposes but also to understand the spatial behaviour of these structures and the excavation processes developed by ancient Egyptians 4000 years ago.


Author(s):  
N. A. S. Russhakim ◽  
M. F. M. Ariff ◽  
Z. Majid ◽  
K. M. Idris ◽  
N. Darwin ◽  
...  

<p><strong>Abstract.</strong> The popularity of Terrestrial Laser Scanner (TLS) has been introduced into a field of surveying and has increased dramatically especially in producing the 3D model of the building. The used of terrestrial laser scanning (TLS) is becoming rapidly popular because of its ability in several applications, especially the ability to observe complex documentation of complex building and observe millions of point cloud in three-dimensional in a short period. Users of building plan usually find it difficult to translate the traditional two-dimensional (2D) data on maps they see on a flat piece of paper to three-dimensional (3D). The TLS is able to record thousands of point clouds which contains very rich of geometry details and made the processing usually takes longer time. In addition, the demand of building survey work has made the surveyors need to obtain the data with full of accuracy and time saves. Therefore, the aim of this study is to study the limitation uses of TLS and its suitability for building survey and mapping. In this study, the efficiency of TLS Leica C10 for building survey was determined in term of its accuracy and comparing with Zeb-Revo Handheld Mobile Laser Scanning (MLS) and the distometer. The accuracy for scanned data from both, TLS and MLS were compared with the Distometer by using root mean square error (RMSE) formula. Then, the 3D model of the building for both data, TLS and MLS were produced to analyze the visualization for different type of scanners. The software used; Autodesk Recap, Autodesk Revit, Leica Cyclone Software, Autocad Software and Geo Slam Software. The RMSE for TLS technique is 0.001<span class="thinspace"></span>m meanwhile, RMSE for MLS technique is 0.007<span class="thinspace"></span>m. The difference between these two techniques is 0.006<span class="thinspace"></span>m. The 3D model of building for both models did not have too much different but the scanned data from TLS is much easier to process and generate the 3D model compared to scanned data from MLS. It is because the scanned data from TLS comes with an image, while none from MLS scanned data. There are limitations of TLS for building survey such as water and glass window but this study proved that acquiring data by TLS is better than using MLS.</p>


2020 ◽  
Author(s):  
Christian Demmler ◽  
Marc Adams ◽  
Anne Hormes

&lt;p&gt;Mountainous areas bring unique challenges for surveying and natural hazard monitoring &amp;#8211; inaccessibility, dangerous terrain, snow coverage and line-of-sight problems often make it next to impossible to perform ground-based monitoring or even to provide a good vantage point for close-range sensing (e.g. terrestrial laser scanning (TLS) or terrestrial photogrammetry). Airborne or satellite-based methods are often the only way to gain information about geodynamically active sites. Here, structure-from-motion (SfM) photogrammetry from unmanned aerial vehicle (UAV) imagery in particular can provide an inexpensive and easily implemented monitoring option. The Vigilans research project attempts to evaluate the feasibility of UAV-photogrammetry against more established surveying methods (e.g. in situ data from extensometers or total stations).&lt;/p&gt;&lt;p&gt;Our study site Marzellkamm is located in the Central &amp;#214;tztal Alps of Western Austria. The active rock slope deformation we are monitoring in Vigilans lies at 2450-2850&amp;#160;m asl. on a SE-facing slope. Annual displacement rates of up to 1.5 m/year in the early 2010&amp;#8217;s triggered monitoring and research interest. Due to the remote location, mitigation methods were not implemented, but a hiking trails was relocated. Orthoimage photogrammetry and ground-based monitoring instrumentation (extensometers, terrestrial laser scanning, total station measurements combined with GNSS and geodetic surveys) collected data 1971-2019.&lt;/p&gt;&lt;p&gt;In the last years, movement along the slope has slowed down considerably. The rather slow current movements provide a valuable challenge for detection, with rates of &lt;0.05&amp;#160;m/year occurring in the more stable upper sections, while the NW section in particular still shows pronounced movement of up to 0.3&amp;#160;m/year. For this reason, Marzellkamm provides excellent evaluation for new methods such as UAV-SfM.&lt;/p&gt;&lt;p&gt;In three separate missions between summer 2018 to fall of 2019, UAV-SfM 3D-models of the site were created for displacement rate evaluations; it is planned to continue this monitoring for a total of three years as part of the Vigilans project. Photogrammetric missions were performed in conjunction with total station measurements of more than 30 ground control points.&lt;/p&gt;&lt;p&gt;The required level of precision is becoming achievable and affordable with new RTK/PPK-equipped (Real-Time-Kinematics/Post-Processed Kinematics) UAVs. However, evaluating the resulting 3D-- model in terms of movement rates remains non-trivial. The most common algorithm for change detection in point clouds, M3C2, is not well-suited to detect a laterally moving surface as a whole, as it detects changes along the normal orientation of a surface (such as subsidence). Therefore, the point cloud needs to be very selectively reduced, requiring complex filtering operations and expert input as well as expensive software packages.&lt;/p&gt;&lt;p&gt;This contribution will present a workflow to simplify such evaluation, based on 2.5D (DEM-based) algorithms such as IMCORR and DoD (Difference-of-DEMs), in comparison with the more complex 3D-pointcloud based processing. The presented workflow is based on Agisoft Metashape and Open-Source software tools QGIS and Saga GIS. It aims to streamline UAV-based surveying work, 3D-model generation and simplified change detection into a repeatable and easily automatable framework. Special emphasis will be put on estimating the quality of the recorded data.&lt;/p&gt;


Author(s):  
N. A. S. Russhakim ◽  
M. F. M. Ariff ◽  
N. Darwin ◽  
Z. Majid ◽  
K. M. Idris ◽  
...  

<p><strong>Abstract.</strong> During the recent years, the used of terrestrial laser scanning (TLS) is becoming rapidly popular because of its ability in several applications, especially the ability to observe complex documentation of complex building and observe millions of point cloud in three-dimensional in a short period. Users of strata plan usually find it difficult to translate the traditional two-dimensional (2D) data on maps they see on a flat piece of paper to three-dimensional (3D). The TLS is able to record thousands of point clouds which contains very rich of geometry details and made the processing usually takes longer time. In addition, the demand of strata survey work has made the surveyors need to obtain the data with full of accuracy and time saves. Therefore, the aim of this study is to study the limitation uses of TLS and its suitability for strata building survey. In this study, the efficiency of TLS Leica C10 for strata building survey was determined in term of its accuracy and comparing with Zeb-Revo Handheld Mobile Laser Scanning (MLS) and the distometer. The accuracy for scanned data from both, TLS and MLS were compared with the Distometer by using root mean square error (RMSE) formula. Then, the 3D model of the building for both data, TLS and MLS were produced to analyze the visualization for different type of scanners. The software used; Autodesk Recap, Autodesk Revit, Leica Cyclone Software, Autocad Software and Geo Slam Software. The RMSE for TLS technique is 0.001m meanwhile, RMSE for MLS technique is 0.007<span class="thinspace"></span>m. The difference between these two techniques is 0.006<span class="thinspace"></span>m. The 3D model of building for both models did not have too much different but the scanned data from TLS is much easier to process and generate the 3D model compared to scanned data from MLS. It is because the scanned data from TLS comes with an image, while none from MLS scanned data. There are limitations of TLS for strata building survey such as water and glass window but this study proved that acquiring data by TLS is better than using MLS.</p>


Author(s):  
H. Macher ◽  
P. Grussenmeyer ◽  
C. Kraemer ◽  
S. Guillemin

In this paper, the 3D documentation of the full structure of the Romanesque church of Dugny-sur-Meuse is discussed. In 2012 and 2013, a 3D recording project was carried out under the supervision of the Photogrammetry and Geomatics Research Group from INSA Strasbourg (France) in cooperation with C. Kraemer, archaeologist from Nancy (France). The goal of the project was on one hand to propose new solutions and tools to the archaeologists in charge of the project especially for stone by stone measurements. On the other hand, a simplified 3D model was required by the local authorities for communication purposes. To achieve these goals several techniques were applied namely GNSS measurements and accurate traverse networks, photogrammetric recordings and terrestrial laser scanning acquisitions. The various acquired data are presented in this paper. Based on these data, several deliverables are also proposed. The generation of orthoimages from plane as well as cylindrical surfaces is considered. Moreover, the workflow for the creation of a 3D simplified model is also presented.


2021 ◽  
Vol 13 (3) ◽  
pp. 507
Author(s):  
Tasiyiwa Priscilla Muumbe ◽  
Jussi Baade ◽  
Jenia Singh ◽  
Christiane Schmullius ◽  
Christian Thau

Savannas are heterogeneous ecosystems, composed of varied spatial combinations and proportions of woody and herbaceous vegetation. Most field-based inventory and remote sensing methods fail to account for the lower stratum vegetation (i.e., shrubs and grasses), and are thus underrepresenting the carbon storage potential of savanna ecosystems. For detailed analyses at the local scale, Terrestrial Laser Scanning (TLS) has proven to be a promising remote sensing technology over the past decade. Accordingly, several review articles already exist on the use of TLS for characterizing 3D vegetation structure. However, a gap exists on the spatial concentrations of TLS studies according to biome for accurate vegetation structure estimation. A comprehensive review was conducted through a meta-analysis of 113 relevant research articles using 18 attributes. The review covered a range of aspects, including the global distribution of TLS studies, parameters retrieved from TLS point clouds and retrieval methods. The review also examined the relationship between the TLS retrieval method and the overall accuracy in parameter extraction. To date, TLS has mainly been used to characterize vegetation in temperate, boreal/taiga and tropical forests, with only little emphasis on savannas. TLS studies in the savanna focused on the extraction of very few vegetation parameters (e.g., DBH and height) and did not consider the shrub contribution to the overall Above Ground Biomass (AGB). Future work should therefore focus on developing new and adjusting existing algorithms for vegetation parameter extraction in the savanna biome, improving predictive AGB models through 3D reconstructions of savanna trees and shrubs as well as quantifying AGB change through the application of multi-temporal TLS. The integration of data from various sources and platforms e.g., TLS with airborne LiDAR is recommended for improved vegetation parameter extraction (including AGB) at larger spatial scales. The review highlights the huge potential of TLS for accurate savanna vegetation extraction by discussing TLS opportunities, challenges and potential future research in the savanna biome.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 835
Author(s):  
Ville Luoma ◽  
Tuomas Yrttimaa ◽  
Ville Kankare ◽  
Ninni Saarinen ◽  
Jiri Pyörälä ◽  
...  

Tree growth is a multidimensional process that is affected by several factors. There is a continuous demand for improved information on tree growth and the ecological traits controlling it. This study aims at providing new approaches to improve ecological understanding of tree growth by the means of terrestrial laser scanning (TLS). Changes in tree stem form and stem volume allocation were investigated during a five-year monitoring period. In total, a selection of attributes from 736 trees from 37 sample plots representing different forest structures were extracted from taper curves derived from two-date TLS point clouds. The results of this study showed the capability of point cloud-based methods in detecting changes in the stem form and volume allocation. In addition, the results showed a significant difference between different forest structures in how relative stem volume and logwood volume increased during the monitoring period. Along with contributing to providing more accurate information for monitoring purposes in general, the findings of this study showed the ability and many possibilities of point cloud-based method to characterize changes in living organisms in particular, which further promote the feasibility of using point clouds as an observation method also in ecological studies.


2021 ◽  
Vol 13 (14) ◽  
pp. 2773
Author(s):  
Georgios Arseniou ◽  
David W. MacFarlane ◽  
Dominik Seidel

Trees have a fractal-like branching architecture that determines their structural complexity. We used terrestrial laser scanning technology to study the role of foliage in the structural complexity of urban trees. Forty-five trees of three deciduous species, Gleditsia triacanthos, Quercus macrocarpa, Metasequoia glyptostroboides, were sampled on the Michigan State University campus. We studied their structural complexity by calculating the box-dimension (Db) metric from point clouds generated for the trees using terrestrial laser scanning, during the leaf-on and -off conditions. Furthermore, we artificially defoliated the leaf-on point clouds by applying an algorithm that separates the foliage from the woody material of the trees, and then recalculated the Db metric. The Db of the leaf-on tree point clouds was significantly greater than the Db of the leaf-off point clouds across all species. Additionally, the leaf removal algorithm introduced bias to the estimation of the leaf-removed Db of the G. triacanthos and M. glyptostroboides trees. The index capturing the contribution of leaves to the structural complexity of the study trees (the ratio of the Db of the leaf-on point clouds divided by the Db of the leaf-off point clouds minus one), was negatively correlated with branch surface area and different metrics of the length of paths through the branch network of the trees, indicating that the contribution of leaves decreases as branch network complexity increases. Underestimation of the Db of the G. triacanthos trees, after the artificial leaf removal, was related to maximum branch order. These results enhance our understanding of tree structural complexity by disentangling the contribution of leaves from that of the woody structures. The study also highlighted important methodological considerations for studying tree structure, with and without leaves, from laser-derived point clouds.


Sign in / Sign up

Export Citation Format

Share Document