scholarly journals Hot-film and calorimetric thermal air flow sensors realized with printed board technology

2016 ◽  
Vol 5 (2) ◽  
pp. 283-291 ◽  
Author(s):  
Thomas Glatzl ◽  
Samir Cerimovic ◽  
Harald Steiner ◽  
Almir Talic ◽  
Roman Beigelbeck ◽  
...  

Abstract. This paper addresses the development of flow sensors optimized for heating, ventilating, and air conditioning systems. The sensors are based on the printed circuit board technology facilitating robust, flexible (in terms of layout), and cost-effective devices. Two approaches for measuring fluid quantities like flow velocity over the whole cross section are investigated in this context. The first one relies on hot-film transduction and stands out for its simplicity, but also shows some severe limitations, which can be circumvented by the second approach based on calorimetric transduction. Supported by extensive numerical simulations, several sensor embodiments were investigated and fabricated. After experimental characterization, measurement and simulation results were compared, which turned out to be in good agreement.

2013 ◽  
Vol 479-480 ◽  
pp. 524-529
Author(s):  
C.T. Pan ◽  
F.T. Hsu ◽  
C.C. Nien ◽  
Z.H. Liu ◽  
Y.J. Chen ◽  
...  

Small and efficient energy harvesters, as a renewable power supply, draw lots of attention in the last few years. This paper presents a planar rotary electromagnetic generator with copper coils fabricated by using printed circuit board (PCB) as inductance and Nd-Fe-B magnets as magnetic element. Coils are fabricated on PCB, which is presumably cost-effective and promising methods. 28-pole Nd-Fe-B magnets with outer diameter of 50 mm and thickness of 2 mm was sintered and magnetized, which can provide magnetic field of 1.44 Tesla. This harvester consists of planar multilayer with multi-pole coils and multi-pole permanent magnet, and the volume of this harvester is about 50x50x2.5 mm3. Finite element analysis is used to design energy harvesting system, and simulation model of the energy harvester is established. In order to verify the simulation, experiment data are compared with simulation result. The PCB energy harvester prototype can generate induced voltage 0.61 V and 13.29mW output power at rotary speed of 4,000 rpm.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Mohammad Reza Khawary ◽  
Vahid Nayyeri ◽  
Seyed Mohammad Hashemi ◽  
Mohammad Soleimani

This paper presents a novel ultracompact narrow bandpass filter with high selectivity. The proposed filter is composed of cascading two basic cells. Each cell is basically a microstrip line loaded with a quasiplanar resonator and series gaps which can be fabricated using a standard multilayer printed circuit board technology. The structure is analyzed through an equivalent circuit and full-wave simulations. The simulation results are compared with experimental measurements demonstrating a good agreement between them. The measurement indicates that the realized bandpass filter at the center frequency of 1 GHz has a fractional bandwidth of 2.2%. Most importantly, in comparison with other similar recent works, it is shown that the proposed filter has the smallest size.


2019 ◽  
Vol 5 (9) ◽  
pp. FSO416 ◽  
Author(s):  
Paul Rice ◽  
Sayali Upasham ◽  
Badrinath Jagannath ◽  
Roshan Manuel ◽  
Madhavi Pali ◽  
...  

Sweat-based analytics have recently caught the attention of researchers and medical professionals alike because they do not require professionally trained personnel or invasive collection techniques to obtain a sample. The following presents a small form-factor biosensor for reporting physiological ranges of cortisol present in ambient sweat (8–151 ng/ml). This device obtains cortisol measurements through low volumes of unstimulated sweat from the user’s wrist. We designed a potentiostatic circuit on a printed circuit board to perform electrochemical testing techniques. The detection modality developed for quantifying sensor response to varying cortisol concentrations is a current based electrochemical technique, chronoamperometry (CA). From the results, the sensor can detect cortisol in the physiologically relevant ranges of cortisol; thus, the sensor is a noninvasive, label free, cost-effective solution for tracking cortisol levels for circadian diagnostics.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Sandeep Chaturvedi ◽  
Shiban K. Koul

Design, fabrication, and test results of a novel 3-layer RF package using a commonly available high frequency laminate are presented in this paper. The developed package can be manufactured using standard multilayer printed circuit board (PCB) manufacturing techniques making it cost effective for commercial applications. The package exhibits excellent RF characteristics up to 6 GHz.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Steffen Scherr ◽  
Serdal Ayhan ◽  
Grzegorz Adamiuk ◽  
Philipp Pahl ◽  
Thomas Zwick

A new concept of an ultrawide bandwidth 180°-hybrid-coupler is presented. The ultrawideband design approach is based on the excitation of a coplanar waveguide (CPW) mode and a coupled slot line (CSL) mode in the same double slotted planar waveguide. The coupler is suitable for realization in planar printed circuit board technology. For verification of the new concept a prototype was designed for the frequency range from 3 GHz to 11 GHz, built, and measured. The measurement results presented in this paper show a good agreement between simulation and measurement and demonstrate the very broadband performance of the new device. The demonstrated coupler with a size of 40 mm × 55 mm exhibits a fractional bandwidth of 114% centered at 7 GHz with a maximum amplitude imbalance of 0.8 dB and a maximum phase imbalance of 5°.


Sign in / Sign up

Export Citation Format

Share Document