scholarly journals Ultrawide Bandwidth 180°-Hybrid-Coupler in Planar Technology

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Steffen Scherr ◽  
Serdal Ayhan ◽  
Grzegorz Adamiuk ◽  
Philipp Pahl ◽  
Thomas Zwick

A new concept of an ultrawide bandwidth 180°-hybrid-coupler is presented. The ultrawideband design approach is based on the excitation of a coplanar waveguide (CPW) mode and a coupled slot line (CSL) mode in the same double slotted planar waveguide. The coupler is suitable for realization in planar printed circuit board technology. For verification of the new concept a prototype was designed for the frequency range from 3 GHz to 11 GHz, built, and measured. The measurement results presented in this paper show a good agreement between simulation and measurement and demonstrate the very broadband performance of the new device. The demonstrated coupler with a size of 40 mm × 55 mm exhibits a fractional bandwidth of 114% centered at 7 GHz with a maximum amplitude imbalance of 0.8 dB and a maximum phase imbalance of 5°.

2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Hui Chen ◽  
Di Jiang ◽  
Ke-Song Chen ◽  
Hong-Fei Zhao

A novel and miniature high-pass filter (HPF) based on a hybrid-coupled microstrip/nonuniform coplanar waveguide (CPW) resonator is proposed in this article, in which the designed CPW has exhibited a wideband dual-mode characteristic within the desired high-pass frequency range. The implemented filter consists of the top microstrip coupled patches and the bottom modified nonuniformly short-circuited CPW resonator. Simulated results from the electromagnetic (EM) analysis software and measured results from a vector network analyzer (VNA) show a good agreement. A designed and fabricated prototype filter having a 3 dB cutoff frequency (fc) of 5.78 GHz has shown an ultrawide high-pass behavior, which exhibits the highest passband frequency exceeding 4.0fcunder the minimum insertion loss (IL) 0.75 dB. The printed circuit board (PCB) area of the filter is approximately0.062λg×0.093λg, whereλgis the guided wavelength atfc.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Mohammad Reza Khawary ◽  
Vahid Nayyeri ◽  
Seyed Mohammad Hashemi ◽  
Mohammad Soleimani

This paper presents a novel ultracompact narrow bandpass filter with high selectivity. The proposed filter is composed of cascading two basic cells. Each cell is basically a microstrip line loaded with a quasiplanar resonator and series gaps which can be fabricated using a standard multilayer printed circuit board technology. The structure is analyzed through an equivalent circuit and full-wave simulations. The simulation results are compared with experimental measurements demonstrating a good agreement between them. The measurement indicates that the realized bandpass filter at the center frequency of 1 GHz has a fractional bandwidth of 2.2%. Most importantly, in comparison with other similar recent works, it is shown that the proposed filter has the smallest size.


2020 ◽  
Vol 8 (5) ◽  
pp. 2587-2590

In this paper, penta-band antenna is presented for concurrent, multiband, and single chain radio receivers. The antenna is manufactured on a 50 × 100 mm FR4 printed circuit board, and is able to provide five concurrent, operating bands covering a frequency range from 2 to 6 GHz. The antenna bandwidth can be increased up to 280 MHz. Using hexahedral mesh the slot antenna design we can achieve more accurate concurrent bands. These five bands are having larger bandwidth than conventional antennas. Using CM-FARAD (Concurrent Multiband Frequency Agile Radio) architecture we design the antenna for achieving concurrent multiband and single chain radio receiver. Using five slots we achieve our five concurrent bands that operate over wide bands which operate at 2.4,3.0,3,7,4.5,5.6 GHz respectively.


Author(s):  
Tran Thi Thuy Ha ◽  
Nguyen Dac Hai ◽  
Bui Thanh Tung

Abstract: This paper presents the design, fabrication and operation of a highly symmetrical two-axis capacitive sensor. The proposed sensor consists of five electrodes, including of an excitation electrode and two pairs of sensing electrodes with exactly the same dimensions, arranged at identified symmetrically locations on a 3D printed hollow sphere, which containing dielectric medium formed by the partly filled oil and the remaining air. The proposed sensor can measure the tilt angle about the x-axis and y-axis with symmetrical outputs. The proposed sensor is fabricated using a rapid prototyping technology and mounted on the surface of a printed circuit board (PCB) for mechanical packaging and signal processing. Experimental measurement results show that the sensor system can measure the tilt angle in both the x- and y-axis with sensitivity of 103 mV/degree and resolution of ±1 degree in the range of -30 degree to +30 degree. This sensor system can be used in many military and consumer applications. Keywords: Capacitive sensor, Fluidic sensor, Two-axis tilt angle sensor.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 142 ◽  
Author(s):  
Yadgar I. Abdulkarim ◽  
Lianwen Deng ◽  
Halgurd N. Awl ◽  
Fahmi F. Muhammadsharif ◽  
Olcay Altintas ◽  
...  

A broadband coplanar waveguide (CPW)-fed monopole antenna based on conventional CPW-fed integration with an organic solar cell (OSC) of 100% insolation is suggested for Ku band satellite communication. The proposed configuration was designed to allow for 100% insolation of the OSC, thereby improving the performance of the antenna. The device structure was fabricated using a Leiterplatten-Kopierfrasen (LPKF) prototyping Printed circuit board (PCB) machine, while a vector network analyzer was utilized to measure the return loss. The simulated results demonstrated that the proposed antenna was able to cover an interesting operating frequency band from 11.7 to 12.22 GHz, which is in compliance with the International Telecommunication Union (ITU). Consequently, a 3 GHz broadband in the Ku band was achieved, along with an enhancement in the realized gain of about 6.30 dB. The simulation and experimental results showed good agreement, whereby the proposed structure could be specifically useful for fixed-satellite-services (FSS) operating over the frequency range from the 11.7 to 12.22 GHz (downlink) band.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Cheuk Yin Cheung ◽  
Joseph S. M. Yuen ◽  
Steve W. Y. Mung

This paper focuses on a printed inverted-F antenna (PIFA) with meandering line and meandering shorting strip under 2.4 GHz industrial, scientific, and medical (ISM) band for Internet of things (IoT) applications. Bluetooth Low Energy (BLE) technology is one of potential platforms and technologies for IoT applications under ISM band. Printed circuit board (PCB) antenna commonly used in commercial and medical applications because of its small size, low profile, and low cost compared to low temperature cofired ceramic (LTCC) technology. The proposed structure of PIFA is implemented on PCB to gain all these advantages. Replacing conventional PCB line in PIFA by the meandering line and meandering shorting strip improves the efficiency of the PIFA as well as the bandwidth. As a case study, design and measurement results of the proposed PIFA are presented.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2201 ◽  
Author(s):  
Pedro A. Martinez ◽  
Enrique A. Navarro ◽  
Jorge Victoria ◽  
Adrian Suarez ◽  
Jose Torres ◽  
...  

Magnetic near-field probes (NFP) represent a suitable tool to measure the magnetic field level from a small electromagnetic interference (EMI) source. This kind of antenna is useful as a magnetic field probe for pre-compliance EMC measurements or debugging tasks since the user can scan a printed circuit board (PCB) looking for locations with strong magnetic fields. When a strong H-field point is found, the designer should check the PCB layout and components placement in that area to detect if this could result in an EMI source. This contribution focuses on analyzing the performance of an easy to build and low-cost H-field NFP designed and manufactured using a standard PCB stack-up. Thereby, the frequency range and sensitivity of the NFP-PCB are analyzed through a Finite Element Method (FEM) simulation model that makes it possible to evaluate its sensibility and effective frequency range. The numerical results obtained with the FEM models are validated against measurements to verify the design and performance of our NFP. The FEM model reproduces the experimental procedure, which is used to evaluate the performance of the NFP in terms of sensitivity by means of the simulated near-field distribution. The NFP-PCB has almost a flat response from 180 MHz to 6 GHz, with an almost perfect concordance between numerical and experimental S21 results. The numerical results show an average transmission loss of −27.9 dB by considering the flat response bandwidth, whereas the experimental one is −29.7 dB. Finally, the designed NFP is compared to two high-quality commercial probes in order to analyze its performance.


2016 ◽  
Vol 5 (2) ◽  
pp. 283-291 ◽  
Author(s):  
Thomas Glatzl ◽  
Samir Cerimovic ◽  
Harald Steiner ◽  
Almir Talic ◽  
Roman Beigelbeck ◽  
...  

Abstract. This paper addresses the development of flow sensors optimized for heating, ventilating, and air conditioning systems. The sensors are based on the printed circuit board technology facilitating robust, flexible (in terms of layout), and cost-effective devices. Two approaches for measuring fluid quantities like flow velocity over the whole cross section are investigated in this context. The first one relies on hot-film transduction and stands out for its simplicity, but also shows some severe limitations, which can be circumvented by the second approach based on calorimetric transduction. Supported by extensive numerical simulations, several sensor embodiments were investigated and fabricated. After experimental characterization, measurement and simulation results were compared, which turned out to be in good agreement.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1324
Author(s):  
Minh Huy Nguyen ◽  
Handy Fortin Blanchette

At high frequency, AC resistance of a printed circuit board (PCB) winding becomes important and accounts for a large proportion of planar transformer losses. The winding is then influenced by both skin and proximity phenomenon, which makes the current distribution uneven resulting in an increased resistance. The study of improving AC resistance of a PCB winding has been tackled by many researchers. However, the lack of an overview and comparison among improvements has made it difficult to apply those methods to a specific winding. To overcome the above limitations, this paper investigates the pros and cons of three popular AC resistance optimizing methods: optimizing track width of a solid PCB winding, using multi-strands and using Litz style PCB winding. To verify the theoretical analysis, a total of 12 PCBs are simulated by finite element (FEM) and tested in the laboratory. Five criteria are analyzed, including skin resistance, proximity resistance, AC to DC ratio, total AC resistance and complexity are taken into consideration. The results of this study show that optimizing track width method has a significant improvement on AC resistance while the use of Litz PCB is effective for applications that need stable AC resistance in a wide frequency range. The use of parallel strands winding should be carefully considered as there is not significant benefit in both reducing the AC resistance and AC to DC ratio.


2021 ◽  
Vol 21 (1) ◽  
pp. 64-70
Author(s):  
Jeong Hun Park ◽  
Moon-Que Lee

This paper presents a new dual-band diode mixer for the X- and K-bands. The proposed mixer consists of a pair of series-connected diodes and a frequency-dependent delay line that operates at 180° and 360° at the X-band of 10.525 GHz and at the K-band of 24.15 GHz, respectively. Without reconfigurable devices such as switches, the proposed mixer operates as a single-balanced diode mixer at the X-band and a subharmonically pumped antiparallel diode mixer at the K-band simultaneously. The designed circuit was implemented in a hybrid microwave integrated circuit using discretely packaged RF components on a microwave printed circuit board. The measurement results showed conversion losses of 6.5 dB and 16.6 dB at the X- and K-bands, respectively.


Sign in / Sign up

Export Citation Format

Share Document