scholarly journals Building an 18 000-year-long paleo-earthquake record from detailed deep-sea turbidite characterisation in Poverty Bay, New Zealand

2012 ◽  
Vol 12 (6) ◽  
pp. 2077-2101 ◽  
Author(s):  
H. Pouderoux ◽  
G. Lamarche ◽  
J.-N. Proust

Abstract. Two ~20 m-long sedimentary cores collected in two neighbouring mid-slope basins of the Paritu Turbidite System in Poverty Bay, east of New Zealand, show a high concentration of turbidites (5 to 6 turbidites per meter), interlaid with hemipelagites, tephras and a few debrites. Turbidites occur as both stacked and single, and exhibit a range of facies from muddy to sandy turbidites. The age of each turbidite is estimated using the statistical approach developed in the OxCal software from an exceptionally dense set of tephrochronology and radiocarbon ages (~1 age per meter). The age, together with the facies and the petrophysical properties of the sediment (density, magnetic susceptibility and P-wave velocity), allows the correlation of turbidites across the continental slope (1400–2300 m water depth). We identify 73 synchronous turbidites, named basin events, across the two cores between 819 ± 191 and 17 729 ± 701 yr BP. Compositional, foraminiferal and geochemical signatures of the turbidites are used to characterise the source area of the sediment, the origin of the turbidity currents, and their triggering mechanism. Sixty-seven basin events are interpreted as originated from slope failures on the upper continental slope in water depth ranging from 150 to 1200 m. Their earthquake trigger is inferred from the heavily gullied morphology of the source area and the water depth at which slope failures originated. We derive an earthquake mean return time of ~230 yr, with a 90% probability range from 10 to 570 yr. The earthquake chronology indicates cycles of progressive decrease of earthquake return times from ~400 yr to ~150 yr at 0–7 kyr, 8.2–13.5 kyr, 14.7–18 kyr. The two 1.2 kyr-long intervals in between (7–8.2 kyr and 13.5–14.7 kyr) correspond to basin-wide reorganisations with anomalous turbidite deposition (finer deposits and/or non deposition) reflecting the emplacement of two large mass transport deposits much more voluminous than the "classical" earthquake-triggered turbidites. Our results show that the progressive characterisation of a turbidite record from a single sedimentary system can provide a continuous paleo-earthquake history in regions of short historical record and incomplete onland paleo-earthquake evidences. The systematic description of each turbidite enables us to infer the triggering mechanism.

2016 ◽  
Vol 67 (11) ◽  
pp. 1725 ◽  
Author(s):  
R. Cossu ◽  
A. L. Forrest ◽  
H. A. Roop ◽  
G. B. Dunbar ◽  
M. J. Vandergoes ◽  
...  

Layers of sediment that are deposited on the floor of Lake Ohau, New Zealand, offer a means to reconstruct past climate conditions in the Southern Hemisphere at subdecadal and annual resolution. A robust understanding of the modern physical processes that control the influx and dispersal of sediment in the lake is required to reconstruct climate from these sedimentary archives. In this study, water temperature and velocity measurements collected during 2012–13 were analysed to determine the primary physical processes that influence sediment transport in the lake. Sediment input from river inflow occurs throughout the year but exhibits strong seasonal variation. Large inflow events (Q>500m3s–1) that follow strong summer rainstorms trigger high-concentration turbidity currents, which are the main agents for sediment delivery and deposition. During winter, smaller turbidity currents also occur after rain events and contribute to annual sediment accumulation. In addition, large internal waves were observed during the summer and may influence sedimentation. In conclusion, several processes including river inflow, internal waves and convectively driven flows control sediment deposition and accumulation in the Lake Ohau system. We utilise these observations to establish a conceptual model to explain the observed infill stratigraphy in Lake Ohau and guide interpretation of the longer sedimentary record.


2019 ◽  
Vol 4 (3) ◽  
pp. 312-331
Author(s):  
Till Jens Jörg Hanebuth ◽  
Vera Barbara Bender ◽  
Renata Hanae Nagai

This study reconstructs Holocene hydrodynamic changes on the outer shelf off Uruguay by examining deposits from a morphological terrace on the uppermost continental slope (250 m water depth). Seismo-acoustics, litho- and chronostratigraphy, granulometry, and Neodymium isotopy were applied to three sediment cores. The 9.5-m thick terrace sediment record, documenting the past 11.5 cal ka BP, provides exceptional insight into the transport and settling mechanisms of the sand injected from the shelf into the open ocean. The sandy outer shelf is identified as the principal sediment origin. Contouritic bottom currents do not significantly affect deposition on the terrace. Instead, the sandy sediment gets spilled over the shelf edge in the form of suspension clouds, spreading uniformly over the whole terrace. The suspended sand does not transform into high-concentration gravity-driven bottom flows but rains down onto the terrace as a quasi-permanent material supply. This observation suggests that the formation of turbidite beds, as frequently found at the deeper slope in this region, requires first a temporary storage of sediment at deposition-favoring locations on the uppermost continental slope (terraces, canyon heads), before a secondary and episodic process can mobilize the mass.An overall fining-upward trend in silty sand shelf export over Holocene times reflects the deglacial sea-level rise dynamics, leading to overall less effective material mobilization on and transfer across the shelf due to water deepening. The pronounced vertical hydrographic shelf front, as a shallow expression of the regional oceanic confluence zone, acted temporarily as main sediment exporting conveyer, before it shifted further north. The water depth of the terrace coincides with the transition zone between Central Water and Intermediate Water. The pronounced water density gradient might influence sediment distribution twofold, acting as a barrier for sand suspension cloud spreading as well as a medium for incoming internal waves bringing sediment remobilization. DINÂMICA DE EXPORTAÇÃO DE SEDIMENTOS EM FUNÇÃO DA VARIABILIDADE HIDRODINÂMICA DURANTE O HOLOCENO NUM SISTEMA DE PLATAFORMA CONTINENTAL DE ELEVADA ENERGIA (SE DA AMÉRICA DO SUL) ResumoEste estudo pretende ser uma contribuição para a reconstrução das alterações hidrodinâmicas Holocénicas, da plataforma continental externa do Uruguai, a partir de depósitos sedimentares de um terraço do talude continental superior (250 m de profundidade). Três testemunhos de sedimentos foram submetidos a análises geofísicas, lito e cronostratigráficas e granulométricas, tendo também sido obtidos resultados de isótopos de neodímio. O registro sedimentar com 9,5 m de espessura no terraço, documentando os últimos 11,5 ka cal BP, fornece importantes informações sobre os mecanismos de transporte e sedimentação da areia remobilizada da plataforma continental e transportada para o oceano profundo.Os dados obtidos na área de estudo revelaram que o substrato arenoso da plataforma continental externa foi a principal fonte de sedimento para o talude continental superior. As correntes de fundo de contorno não afetaram significativamente a deposição de sedimentos no referido terraço. Em vez disso, o sedimento arenoso remobilizado da plataforma formou nuvens de partículas em suspensão que se espalharam uniformemente por todo o terraço. A areia, uma vez em suspensão, não deu ludar a fluxos gravitacionais de fundo concentrados, mas “choveu” de modo quase continuo por todo o terraço. Esta constatação sugere que a formação de camadas turbidíticas, tais como as que freqüentemente são encontradas no talude continental inferior da região, requerem que primeiramente haja um armazenamento temporário de sedimentos em locais favoráveis à sua deposição na plataforma continental superior (terraços, cabeceiras de cânions), antes da ocorrência de um processo secundário e episódico poder mobilizar os materiais acumulados.Verifica-se, na área de estudo, uma tendência geral de redução da granulometria da areia siltosa ao longo do Holoceno devido à subida do nível do mar após a deglaciação; esta terá levado a uma menor remobilização e a uma transferência menos eficaz de sedimentos da plataforma continental para o talude devido ao aumento da profundidade da coluna de água.A pronunciada frente hidrográfica vertical da plataforma, expressão da zona de confluência oceânica regional, atuou temporariamente como principal processo de transporte e exportação de sedimentos, para norte. A profundidade da água do terraço coincide com a zona de transição entre a Água Central e a Água Intermediária. O pronunciado gradiente de densidade da água poderá ter influenciado de duas maneiras a distribuição de sedimentos, atuando como uma barreira para a propagação da nuvem de areia em suspensão e como meio de propagação de ondas internas que chegam, remobilizando e exportando sedimentos. Palavras-chave: Exportação de sedimentos de plataforma. Margem oceânica de elevada energia. Sudeste da América do Sul. Holoceno. 


1987 ◽  
Vol 22 (1) ◽  
pp. 49-64 ◽  
Author(s):  
J.F. Devlin ◽  
W.A. Gorman

Abstract The Gloucester Landfill is located near Ottawa, Ontario, on a northeast trending ridge of Quaternary age. The ridge comprises outwash sediments which make up two aquifer systems. A confined system exists next to bedrock, and is overlain by a silty-clayey stratum (the confining layer) which is, in turn, overlain by an unconfined aquifer system. Two independent volatile organic plumes have previously been identified at the landfill: the southeast plume, which has penetrated the confined aquifer system, and the northeast plume which is migrating in the unconfined aquifer. The distribution of volatile organic contaminants at the northeast plume site appears to be a function of two factors: (1) heterogeneities in the aquifer sediments are causing the channeling of contaminants through a narrow path; (2) the low fraction of organic carbon in the unconfined aquifer sediments at the northeast site is resulting in little retardation of the contaminants there, relative to those at the southeast site. Acetate was the only volatile fatty acid detected in the leachate. It was measurable only in areas where the volatile organic contamination was significant. Although methane was detected in the contaminated sediments, suggesting that microbial activity was present, the high concentration of acetate (>1000 ppm) which was detected down-gradient from the source area indicates that any biodegradation which is occurring is proceeding at a very slow rate.


2021 ◽  
Author(s):  
Janusz Wasowski ◽  
Maurice McSaveney ◽  
Luca Pisanu ◽  
Vincenzo Del Gaudio ◽  
Yan Li ◽  
...  

<p>Large earthquake-triggered landslides, in particular rock avalanches, can have catastrophic consequences. However, the recognition of slopes prone to such failures remains difficult, because slope-specific seismic response depends on many factors including local topography, landforms, structure and internal geology. We address these issues by exploring the case of a rock avalanche of >3 million m<sup>3</sup> triggered by the 2008 Mw7.9 Wenchuan earthquake in the Longmen Shan range, China. The failure, denominated Yangjia gully rock avalanche, occurred in Beichuan County (Sichuan Province), one of the areas that suffered the highest shaking intensity and death toll caused by co-seismic landsliding. Even though the Wenchuan earthquake produced tens of large (volume >1 million m<sup>3</sup>) rock avalanches, few studies so far have examined the pre-2008 history of the failed slope or reported on the stratigraphic record of mass-movement deposits exposed along local river courses. The presented case of the Yangjia gully rock avalanche shows the importance of such attempts as they provide information on the recurrence of large slope failures and their associated hazards. Our effort stems from recognition, on 2005 satellite imagery, of topography and morphology indicative of a large, apparently pre-historic slope failure and the associated breached landslide dam, both features closely resembling the forms generated in the catastrophic 2008 earthquake. The follow-up reconstruction recognizes an earlier landslide deposit exhumed from beneath the 2008 Yangjia gully rock avalanche by fluvial erosion since May 2008. We infer a seismic trigger also for the pre-2008 rock avalanche based on the following circumstantial evidence: i) the same source area (valley-facing, terminal portion of a flat-topped, elongated mountain ridge) located within one and a half kilometer of the seismically active Beichuan fault; ii) significant directional amplification of ground vibration, sub-parallel to the failed slope direction, detected via ambient noise measurements on the ridge adjacent to the source area of the 2008 rock avalanche and iii) common depositional and textural features of the two landslide deposits. Then, we show how, through consideration of the broader geomorphic and seismo-tectonic contexts, one can gain insight into the spatial and temporal recurrence of catastrophic slope failures  in Beichuan County and elsewhere in the Longmen Shan. This insight, combined with local-scale geologic and geomorphologic knowledge, may guide selection of suspect slopes for reconnaissance, wide-area ambient noise investigation aimed at discriminating their relative susceptibility to co-seismic catastrophic failures. We indicate the feasibility of such investigations through the example of this study, which uses 3-component velocimeters designed to register low amplitude ground vibration.</p>


2021 ◽  
Author(s):  
◽  
James McClintock

<p>The Glenburn Formation of the East Coast of New Zealand is a Late Cretaceous sedimentary formation consisting of alternating layers of sandstone, mudstone and conglomerate. The Glenburn Formation spans a depositional timeframe of over 10 Ma, is over 1000 m thick, is regionally extensive and is possibly present over large areas offshore. For these reasons, it is important to constrain the paleoenvironment of this unit.  Late Cretaceous paleogeographic reconstructions of the East Coast Basin are, however, hampered by a number of factors, including the pervasive Neogene to modern tectonic deformation of the region, the poorly understood nature of the plate tectonic regime during the Cretaceous, and a lack of detailed sedimentological studies of most of the region’s Cretaceous units. Through detailed mapping of the Glenburn Formation, this study aims to improve inferences of regional Cretaceous depositional environments and paleogeography.  Detailed facies based analysis was undertaken on several measured sections in eastern Wairarapa and southern Hawke’s Bay. Information such as bed thickness, grain size and sedimentary structures were recorded in order to identify distinct facies. Although outcrop is locally extensive, separate outcrop localities generally lie in different thrust blocks, which complicates comparisons of individual field areas and prevents construction of the large-scale, three-dimensional geometry of the Glenburn Formation.  Glenburn Formation consists of facies deposited by sediment gravity flows that were primarily turbidity currents and debris flows. Facies observed are consistent with deposition on a prograding submarine fan system. There is significant variation in facies both within and between sections. Several distinct submarine fan architectural components are recognised, such as fan fringes, fan lobes, submarine channels and overbank deposits. Provenance and paleocurrent indicators are consistent with deposition having occurred on several separate submarine fans, and an integrated regional paleogeographic reconstruction suggests that deposition most likely occurred in a fossil trench following the mid-Cretaceous cessation of subduction along the Pacific-facing margin of Gondwana.</p>


2021 ◽  
Author(s):  
Xiaoyi Pan ◽  
Linlin Li ◽  
Hong Phuong Nguyen ◽  
Dawei Wang

&lt;p&gt;The 109 meridian fault is located in the west of the South China Sea (SCS) connecting to the offshore Red River Shear Zone. The evolution processes of the 109 meridian fault: striking-uplifting-subsidence of adjacent basin led to a nearly 1000m sharp bathymetric difference in the offshore region of central Vietnam. Combined with the high sediment input from numerous montane rivers in the rising hinterland, the continental slope near central Vietnam possesses the ideal condition for developing submarine landslides. Seismic data indicates many submarine landslides were developed along the steep continental slope. In this study, we analyze the possible trigger mechanisms of these landslides based on the local geological background and sedimentary environment, and assess their tsunamigenic potential along the coast of the Southern Central Vietnam (SCV). We point out that the landslide failures in this region could be triggered by several mechanisms, including seismic activities in the offshore SCV, volcanic activities, gas seep on the slope and the relative sea-level changes. The seismic and volcanic activities are related directly to the late middle Miocene volcanism generated by the change from left- to right-lateral motion on the Red River Shear Zone, showing that tectonism play a significant role in the generation of submarine landslide in the western continental slope of the SCS. To estimate the impact of tsunami waves on SCV coastline, we use two numerical models&amp;#8212;NHWAVE and FUNWAVE-TVD to model 4 representative landslides with volume ranging between 1-4km&lt;sup&gt;3&lt;/sup&gt; and water depth of 300-1000m. The submarine landslides were treated as rigid slump and deformable slide corresponding to two different sedimentary environments. Our results show that the tsunami waves generated by rigid slump can reach up to 20m height in the landslide source area and arrive earlier to the coast of SCV than waves generated by deformable slide. Among these simulated scenarios, tsunami waves generated by the worst-case scenario arrive at the populated cities including Quy Nh&amp;#417;n (109.3&amp;#176;E,13.77&amp;#176;N), Tuy H&amp;#242;a (109.37&amp;#176;E ,13.08&amp;#176;N) and Vung Ro Bay (109.43&amp;#176;E&amp;#65292;12.86&amp;#176;N) in less than 25mins with maximum height of 5m. It is worth mentioning that the Vung Ro Bay will be affected by tsunami waves in all simulated scenarios. We quantify the influence of landslide characteristics (volume, water depth and material) and highlight the local effect of coastal bathymetry on the tsunami generation and propagation which lead to different hazard level of SCV coast.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document