scholarly journals Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale

2013 ◽  
Vol 13 (4) ◽  
pp. 869-885 ◽  
Author(s):  
P. Horton ◽  
M. Jaboyedoff ◽  
B. Rudaz ◽  
M. Zimmermann

Abstract. The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by process-based modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM). The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under http://www.flow-r.org) and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws. We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10 m DEM resolution as a good compromise between processing time and quality of results. However, valuable results have still been obtained on the basis of lower quality DEMs with 25 m resolution.

2011 ◽  
Vol 11 (2) ◽  
pp. 627-641 ◽  
Author(s):  
M. S. Kappes ◽  
J.-P. Malet ◽  
A. Remaître ◽  
P. Horton ◽  
M. Jaboyedoff ◽  
...  

Abstract. Debris flows are among the most dangerous processes in mountainous areas due to their rapid rate of movement and long runout zone. Sudden and rather unexpected impacts produce not only damages to buildings and infrastructure but also threaten human lives. Medium- to regional-scale susceptibility analyses allow the identification of the most endangered areas and suggest where further detailed studies have to be carried out. Since data availability for larger regions is mostly the key limiting factor, empirical models with low data requirements are suitable for first overviews. In this study a susceptibility analysis was carried out for the Barcelonnette Basin, situated in the southern French Alps. By means of a methodology based on empirical rules for source identification and the empirical angle of reach concept for the 2-D runout computation, a worst-case scenario was first modelled. In a second step, scenarios for high, medium and low frequency events were developed. A comparison with the footprints of a few mapped events indicates reasonable results but suggests a high dependency on the quality of the digital elevation model. This fact emphasises the need for a careful interpretation of the results while remaining conscious of the inherent assumptions of the model used and quality of the input data.


2021 ◽  
Vol 10 (5) ◽  
pp. 315
Author(s):  
Hilal Ahmad ◽  
Chen Ningsheng ◽  
Mahfuzur Rahman ◽  
Md Monirul Islam ◽  
Hamid Reza Pourghasemi ◽  
...  

The China–Pakistan Economic Corridor (CPEC) project passes through the Karakoram Highway in northern Pakistan, which is one of the most hazardous regions of the world. The most common hazards in this region are landslides and debris flows, which result in loss of life and severe infrastructure damage every year. This study assessed geohazards (landslides and debris flows) and developed susceptibility maps by considering four standalone machine-learning and statistical approaches, namely, Logistic Regression (LR), Shannon Entropy (SE), Weights-of-Evidence (WoE), and Frequency Ratio (FR) models. To this end, geohazard inventories were prepared using remote sensing techniques with field observations and historical hazard datasets. The spatial relationship of thirteen conditioning factors, namely, slope (degree), distance to faults, geology, elevation, distance to rivers, slope aspect, distance to road, annual mean rainfall, normalized difference vegetation index, profile curvature, stream power index, topographic wetness index, and land cover, with hazard distribution was analyzed. The results showed that faults, slope angles, elevation, lithology, land cover, and mean annual rainfall play a key role in controlling the spatial distribution of geohazards in the study area. The final susceptibility maps were validated against ground truth points and by plotting Area Under the Receiver Operating Characteristic (AUROC) curves. According to the AUROC curves, the success rates of the LR, WoE, FR, and SE models were 85.30%, 76.00, 74.60%, and 71.40%, and their prediction rates were 83.10%, 75.00%, 73.50%, and 70.10%, respectively; these values show higher performance of LR over the other three models. Furthermore, 11.19%, 9.24%, 10.18%, 39.14%, and 30.25% of the areas corresponded to classes of very-high, high, moderate, low, and very-low susceptibility, respectively. The developed geohazard susceptibility map can be used by relevant government officials for the smooth implementation of the CPEC project at the regional scale.


2021 ◽  
Vol 5 (3) ◽  
pp. 1475-1491
Author(s):  
Gisele Marilha Pereira Reginatto ◽  
Regiane Mara Sbroglia ◽  
Camilo Andrade Carreño ◽  
Bianca Rodrigues Schvartz ◽  
Pâmela Betiatto ◽  
...  

In translational landslide susceptibility analysis with SHALSTAB (Shallow Landsliding Stability Model), the resolution of the digital elevation model (DSM) is determinant for defining the type of mapping generated (preliminary or not). In this study, in order to verify the influence of the SDM scale on the SHALSTAB stability classes, susceptibility maps were prepared at two scales: 1:50,000 and 1:10,000. The study area was the Garcia River watershed, belonging to the municipality of Blumenau, Santa Catarina, affected by landslides in the 2008 catastrophe, which enabled the validation of the simulations with the scars mapped in the field. Thus, the influence of scale on the distribution of the model's stability classes and on its performance was verified. SHALSTAB performed better at the 1:10,000 scale, predicting 70% of the instabilities in a percentage of unstable area approximately three times smaller than at the 1,50,000 scale.


Shore & Beach ◽  
2021 ◽  
pp. 56-64
Author(s):  
S. McGill ◽  
C. Sylvester ◽  
L. Dunkin ◽  
E. Eisemann ◽  
J. Wozencraft

Regional-scale shoreline and beach volume changes are quantified using the Joint Airborne Lidar Bathymetry Technical Center of Expertise’s digital elevation model products in a change detection framework following the passage of the two landfalling hurricanes, Hurricanes Sally and Zeta, along the northern Gulf Coast in late fall 2020. Results derived from this work include elevation change raster products and a standard set of beach volume and shoreline change metrics. The rapid turn-around and delivery of data products to include volume and shoreline change assessments provide valuable information about the status of the coastline and identification of areas of significant erosion or other impacts, such as breaching near Perdido Key, FL, from Hurricane Sally’s impact. These advanced change detection products help inform sediment budget development and support decisions related to regional sediment management and coastal storm risk management.


2021 ◽  
Vol 314 ◽  
pp. 05002
Author(s):  
Hasna Moumni ◽  
Karima Sebari ◽  
Laila Stour ◽  
Abdellatif Ahbari

The availability, accessibility and quality of data are significant obstacles to hydrological modelling. Estimating the initial values of the hydrological model´’ ’s parameters is a laborious and determining task requiring much attention. Geographic information systems (GIS) and spatial remote sensing are prometting tools for processing and collecting data. In this work, we use an innovative approach to estimate the HEC-HMS hydrological model parameters from the soil map of Africa (250m), the land use map GLC30, the depth to bedrock map, the digital elevation model and observed flow data. The estimation approach is applied to the Ouergha basin (Sebou, Morocco). The proposed approach’s interest is to feed the HEC-HMS hydrological model with initial values of parameters close to the study area reality instead of using random parameters.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4865 ◽  
Author(s):  
Zhiwei Liu ◽  
Jianjun Zhu ◽  
Haiqiang Fu ◽  
Cui Zhou ◽  
Tingying Zuo

The global digital elevation model (DEM) is important for various scientific applications. With the recently released TanDEM-X 90-m DEM and AW3D30 version 2.2, the open global or near-global coverage DEM datasets have been further expanded. However, the quality of these DEMs has not yet been fully characterized, especially in the application for regional scale studies. In this study, we assess the quality of five freely available global DEM datasets (SRTM-1 DEM, SRTM-3 DEM, ASTER GDEM2, AW3D30 DEM and TanDEM-X 90-m DEM) and one 30-m resampled TanDEM-X DEM (hereafter called TDX30) over the south-central Chinese province of Hunan. Then, the newly-released high precision ICESat-2 (Ice, Cloud, and land Elevation Satellite-2) altimetry points are introduced to evaluate the accuracy of these DEMs. Results show that the SRTM1 DEM offers the best quality with a Root Mean Square Error (RMSE) of 8.0 m, and ASTER GDEM2 has the worst quality with the RMSE of 10.1 m. We also compared the vertical accuracies of these DEMs with respect to different terrain morphological characteristics (e.g., elevation, slope and aspect) and land cover types. It reveals that the DEM accuracy decreases when the terrain elevation and slope value increase, whereas no relationship was found between DEM error and terrain aspect. Furthermore, the results show that the accuracy increases as the land cover type changes from vegetated to non-vegetated. Overall, the SRTM1 DEM, with high spatial resolution and high vertical accuracy, is currently the most promising dataset among these DEMs and it could, therefore, be utilized for the studies and applications requiring accurate DEMs.


Landslides ◽  
2020 ◽  
Vol 17 (12) ◽  
pp. 2795-2809 ◽  
Author(s):  
Erin K. Bessette-Kirton ◽  
Jeffrey A. Coe ◽  
William H. Schulz ◽  
Corina Cerovski-Darriau ◽  
Mason M. Einbund

Abstract Mobility is an important element of landslide hazard and risk assessments yet has been seldom studied for shallow landslides and debris flows in tropical environments. In September 2017, Hurricane Maria triggered > 70,000 landslides across Puerto Rico. Using aerial imagery and a lidar digital elevation model (DEM), we mapped and characterized the mobility of debris slides and flows in four different geologic materials: (1) mudstone, siltstone, and sandstone; (2) submarine basalt and chert; (3) marine volcaniclastics; and (4) granodiorite. We used the ratio of landslide-fall height (H) to travel length (L), H/L, to assess the mobility of landslides in each material. Additionally, we differentiated between landslides with single and multiple source areas and landslides that either did or did not enter drainages. Overall, extreme rainfall contributed to the mobility of landslides during Hurricane Maria, and our results showed that the mobility of debris slides and flows in Puerto Rico increased linearly as a function of the number of source areas that coalesced. Additionally, landslides that entered drainages were more mobile than those that did not. We found that landslides in soils developed on marine volcaniclastics were the most mobile and landslides in soils on submarine basalt and chert were the least mobile. While landslides were generally small (< 100 m2) and displayed a wide range of H/L values (0.1–2), coalescence increased the mobility of landslides that transitioned to debris flows. The high but variable mobility of landslides that occurred during Hurricane Maria and the associated hazards highlight the importance of characterizing and understanding the factors influencing landslide mobility in Puerto Rico and other tropical environments.


Geosciences ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 248 ◽  
Author(s):  
Mariaelena Cama ◽  
Calogero Schillaci ◽  
Jan Kropáček ◽  
Volker Hochschild ◽  
Alberto Bosino ◽  
...  

Soil erosion represents one of the most important global issues with serious effects on agriculture and water quality, especially in developing countries, such as Ethiopia, where rapid population growth and climatic changes affect widely mountainous areas. The Meskay catchment is a head catchment of the Jemma Basin draining into the Blue Nile (Central Ethiopia) and is characterized by high relief energy. Thus, it is exposed to high degradation dynamics, especially in the lower parts of the catchment. In this study, we aim at the geomorphological assessment of soil erosion susceptibilities. First, a geomorphological map was generated based on remote sensing observations. In particular, we mapped three categories of landforms related to (i) sheet erosion, (ii) gully erosion, and (iii) badlands using a high-resolution digital elevation model (DEM). The map was validated by a detailed field survey. Subsequently, we used the three categories as dependent variables in a probabilistic modelling approach to derive the spatial distribution of the specific process susceptibilities. In this study we applied the maximum entropy model (MaxEnt). The independent variables were derived from a set of spatial attributes describing the lithology, terrain, and land cover based on remote sensing data and DEMs. As a result, we produced three separate susceptibility maps for sheet and gully erosion as well as badlands. The resulting susceptibility maps showed good to excellent prediction performance. Moreover, to explore the mutual overlap of the three susceptibility maps, we generated a combined map as a color composite where each color represents one component of water erosion. The latter map yields useful information for land-use managers and planning purposes.


OENO One ◽  
2016 ◽  
Vol 50 (3) ◽  
Author(s):  
Léo Pichon ◽  
Arnaud Ducanchez ◽  
Hélène Fonta ◽  
Bruno Tisseyre

<p style="text-align: justify;"><strong>Aims:</strong> This work aims to study the quality of low cost Digital Surface Models (DSMs) obtained with Unmanned Aerial Vehicle (UAV) images and to test whether these DSMs meet common requirements of the wine industry.</p><p style="text-align: justify;"><strong>Methods and results: </strong>Experiments were carried out on a 4-ha vineyard located 10 km north of Beziers (France). The experimental site presents slope and aspect variations representative of mechanised commercial vineyards in Languedoc Roussillon. DSMs were provided by three UAV companies selected for the diversity of their solutions in terms of image capture altitude, type of UAV and image processing software. DSMs were obtained by photogrammetry and correspond to commercial products usually delivered by UAV companies. DSMs from UAV were compared to a reference Digital Elevation Model (DEM) acquired by a laser tachymeter. Four indicators were used to test the quality of DSMs: the mean error and its dispersion in the XY plane and in elevation Z. Results show a good georeferencing of the DSMs (MeanErrorXY&lt;10 cm) and a similar quality in elevation (MeanErrorZ&lt;10 cm) estimation. Results also show that the error in elevation is highly spatially structured. The spatial patterns observed did not depend on the elevation and could be related to algorithms used to compute the DSMs.</p><p style="text-align: justify;"><strong>Conclusion: </strong>Data acquisition and processing methods have an impact on the quality of the DSMs provided by the UAV companies. DSM qualities are good enough to meet commercial vineyard requirements. The tested DSMs fit the requirements to assess field characteristics (elevation, slope, aspects) which may be important for terroir characterisation purposes.</p><p style="text-align: justify;"><strong>Significance and impact of the study:</strong> This study proves that elevation data derived from UAV present an accuracy equivalent to the reference system used in this study. The rapidity, the low cost and the high spatial resolution of these data offer significant opportunities for the development of new services for the wine industry for field characterisation.</p>


2018 ◽  
Vol 73 (4) ◽  
pp. 357-371 ◽  
Author(s):  
Mario Kummert ◽  
Reynald Delaloye

Abstract. When connected to torrential channels, periglacial moving landforms (including rock glaciers, push moraines and high-altitude landsliding masses) may constitute important active sediment sources for gravitational and torrential transfer processes such as debris flows. However, still very little is known about the location and the number of such types of sedimentary connection in given regions, as well as about the typical sediment transfer rates that can be expected. Therefore, this contribution aims at (i) describing a new methodology developed to identify and characterize moving landforms connected to the torrential network system at a regional scale and (ii) presenting the results yielded from the application of this method in a 2000 km2 region in the southwestern Swiss Alps. The developed approach is based on the analysis of simple data such as a high-resolution digital elevation model (DEM), time series of aerial images and a slope movement inventory. The approach allowed both the fast identification of moving landforms connected to torrential channels and the estimation of annual sediment transfer rates for these inventoried landforms. In the study region, results showed that such types of sedimentary connection appeared to be rather rare. Results also showed that most connected moving landforms were characterized by relatively low sediment transfer rates (<500 m3 yr−1) but several sites were identified as transferring large amounts of sediment into the torrents (>1000 m3 yr−1). As sediment transfer rates depend on the kinematical behavior of the landforms, values calculated may change in regard to the evolution of the surface velocities, which are currently generally increasing in the European Alps. When connected to torrents, periglacial moving landforms may thus represent substantial active sources of sediments for the development of debris flows and should be considered in the management of torrential catchments.


Sign in / Sign up

Export Citation Format

Share Document