scholarly journals A coupled wave–3-D hydrodynamics model of the Taranto Sea (Italy): a multiple-nesting approach

2016 ◽  
Vol 16 (9) ◽  
pp. 2071-2083 ◽  
Author(s):  
Maria Gabriella Gaeta ◽  
Achilleas G. Samaras ◽  
Ivan Federico ◽  
Renata Archetti ◽  
Francesco Maicu ◽  
...  

Abstract. The present work describes an operational strategy for the development of a multiscale modeling system, based on a multiple-nesting approach and open-source numerical models. The strategy was applied and validated for the Gulf of Taranto in southern Italy, scaling large-scale oceanographic model results to high-resolution coupled wave–3-D hydrodynamics simulations for the area of Mar Grande in the Taranto Sea. The spatial and temporal high-resolution simulations were performed using the open-source TELEMAC suite, forced by wind data from the COSMO-ME database, boundary wave spectra from the RON buoy at Crotone and results from the Southern Adriatic Northern Ionian coastal Forecasting System (SANIFS) regarding sea levels and current fields. Model validation was carried out using data collected in the Mar Grande basin from a fixed monitoring station and during an oceanographic campaign in October 2014. The overall agreement between measurements and model results in terms of waves, sea levels, surface currents, circulation patterns and vertical velocity profiles is deemed to be satisfactory, and the methodology followed in the process can constitute a useful tool for both research and operational applications in the same field and as support of decisions for management and design of infrastructures.

2016 ◽  
Author(s):  
Maria Gabriella Gaeta ◽  
Achilleas G. Samaras ◽  
Ivan Federico ◽  
Renata Archetti

Abstract. The present work describes an operational strategy for the development of a multiscale modelling system, based on a multiple–nesting approach and open–source numerical models. The strategy was applied and validated for the Gulf of Taranto in South Italy, scaling large–scale oceanographic model results to high–resolution coupled wave – 3D hydrodynamics simulations for the area of Mar Grande in Taranto Sea. The spatial and temporal high – resolution simulations were performed using the open–source TELEMAC suite, forced by wind data from the COSMO–ME database, boundary wave spectra from the RON Buoy at Crotone, and results from the Southern Adriatic Northern Ionian coastal Forecasting System (SANIFS) regarding sea levels and current fields. Model validation was carried out using data collected in the Mar Grande basin from a fixed monitoring station and during an oceanographic campaign in October 2014. The overall agreement between measurements and model results in terms of waves, sea levels, surface currents, circulation patterns and vertical velocity profiles is deemed to be satisfactory, and the methodology followed in the process can constitute a useful tool for both research and operational applications on the same field and and as support of decisions for management and design of infrastructures.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1380 ◽  
Author(s):  
Maria Gabriella Gaeta ◽  
Davide Bonaldo ◽  
Achilleas G. Samaras ◽  
Sandro Carniel ◽  
Renata Archetti

This work presents the results of the numerical study implemented for the natural area of Lido di Spina, a touristic site along the Italian coast of the North Adriatic Sea, close to the mouth of River Reno. High-resolution simulations of nearshore dynamics are carried out under climate change conditions estimated for the site. The adopted modeling chain is based on the implementation of multiple-nested, open-source numerical models. More specifically, the coupled wave-2D hydrodynamics runs, using the open-source TELEMAC suite, are forced at the offshore boundary by waves resulting from the wave model (SWAN) simulations for the Adriatic Sea, and sea levels computed following a joint probability analysis approach. The system simulates present-day scenarios, as well as conditions reflecting the high IPCC greenhouse concentration trajectory named RCP8.5 under predicted climate changes. Selection of sea storms directed from SE (Sirocco events) and E–NE (Bora events) is performed together with Gumbel analysis, in order to define ordinary and extreme sea conditions. The numerical results are here presented in terms of local parameters such as wave breaking position, alongshore currents intensity and direction and flooded area, aiming to provide insights on how climate changes may impact hydrodynamics at a site scale. Although the wave energy intensity predicted for Sirocco events is expected to increase only slightly, modifications of the wave dynamics, current patterns, and inland flooding induced by climate changes are expected to be significant for extreme conditions, especially during Sirocco winds, with an increase in the maximum alongshore currents and in the inundated area compared to past conditions.


10.2196/11734 ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. e11734 ◽  
Author(s):  
Yatharth Ranjan ◽  
Zulqarnain Rashid ◽  
Callum Stewart ◽  
Pauline Conde ◽  
Mark Begale ◽  
...  

Background With a wide range of use cases in both research and clinical domains, collecting continuous mobile health (mHealth) streaming data from multiple sources in a secure, highly scalable, and extensible platform is of high interest to the open source mHealth community. The European Union Innovative Medicines Initiative Remote Assessment of Disease and Relapse-Central Nervous System (RADAR-CNS) program is an exemplary project with the requirements to support the collection of high-resolution data at scale; as such, the Remote Assessment of Disease and Relapse (RADAR)-base platform is designed to meet these needs and additionally facilitate a new generation of mHealth projects in this nascent field. Objective Wide-bandwidth networks, smartphone penetrance, and wearable sensors offer new possibilities for collecting near-real-time high-resolution datasets from large numbers of participants. The aim of this study was to build a platform that would cater for large-scale data collection for remote monitoring initiatives. Key criteria are around scalability, extensibility, security, and privacy. Methods RADAR-base is developed as a modular application; the backend is built on a backbone of the highly successful Confluent/Apache Kafka framework for streaming data. To facilitate scaling and ease of deployment, we use Docker containers to package the components of the platform. RADAR-base provides 2 main mobile apps for data collection, a Passive App and an Active App. Other third-Party Apps and sensors are easily integrated into the platform. Management user interfaces to support data collection and enrolment are also provided. Results General principles of the platform components and design of RADAR-base are presented here, with examples of the types of data currently being collected from devices used in RADAR-CNS projects: Multiple Sclerosis, Epilepsy, and Depression cohorts. Conclusions RADAR-base is a fully functional, remote data collection platform built around Confluent/Apache Kafka and provides off-the-shelf components for projects interested in collecting mHealth datasets at scale.


2021 ◽  
Author(s):  
Guido Schröder

<p>A modified lightning potential index (MLPI) for numerical models with parameterized deep convection is presented. It is based on the LPI formula of Lynn and Yair (2010). Following the idea of Lopez (2016), the quantities (e.g. vertical velocity) needed in the LPI formula are derived from the updraft of the Bechtold-Tiedtke parameterization scheme (Bechtold et al., 2014). The formula is further improved by taking into account the vertical equivalent potential temperature gradient.</p><p>The LPI and MLPI are tested in ICON with 20km resolution (ICON-20) over central Europe. A key component in the LPI is the vertical velocity. To assess its quality, the vertical velocity of the updraft in the convection scheme in ICON-20 is compared to updrafts in the convection-resolving COSMO model with 2.2 km resolution (COSMO-D2). It is shown that in ICON-20 the extension of the vertical velocity is generally broader with the maximum located in higher altitudes. In the charge separation area where the vertical velocity is relevant, the ICON-20 vertical velocity is less than in COSMO-D2. Consequently, the LPI values in ICON-20 are lower by a factor of 2 compared to COSMO-D2.</p><p>The MLPI is verified against LINET lightning data (Betz et al. 2009) over central Europe for summer 2020 and compared to LPI in COSMO-D2. The MLPI is also compared to the LPI and the lightning flash density (LFD,  Lopez, 2016), all computed in ICON-20. For the test period the MLPI outperforms the LPI and LFD. However, the quality of the LPI in COSMO-D2 cannot quite be reached.</p><p> </p><p>Bechtold et al. 2014: Representing Equilibrium and Nonequilibrium Convection in Large-Scale Models. J. Atmos. Sci. 71, 734-753.</p><p>Betz et al., 2009:  LINET - An international lightning detection network in Europe. Atmos.  Res. 91 564–573.</p><p>Lopez, 2016: A Lightning Parameterization for the ECMWF Integrated Forecasting System. Mon. Wea. Rev., 144, 3057-2075.</p><p>Lynn and Yair, 2010: Prediction of lightning flash density with the WRF model  Adv. Geosci., 23, 11–16.</p>


2011 ◽  
Vol 1 (32) ◽  
pp. 37
Author(s):  
Francesca Catini ◽  
Francesca Montagna ◽  
Leopoldo Franco ◽  
Giorgio Bellotti ◽  
Stefano Corsini ◽  
...  

This paper describes a research aimed at developing a high-resolution nearshore wave forecasting/hindcasting system for the Italian coasts. Data recorded by buoys located in shallow water are compared with hindcasted data. The model uses the results of the well-tested large scale meteorological forecasting system named 'Idro-meteo-mare' (SIMM) managed by ISPRA, the Italian Agency for the Environmental Protection and Research, as wind input for WAM and SWAN models. Two different approaches are used for the Adriatic and the Tyrrhenian/Ligurian Sea. In the first eastern basin two/three SWAN nested grids have been used, while in the second western basins two WAM nested grids and a finer SWAN grid have been used. Both methodologies have shown a good accuracy and and a reasonable level of efficiency.


2014 ◽  
Vol 11 (1) ◽  
pp. 11-23 ◽  
Author(s):  
M. Casaioli ◽  
F. Catini ◽  
R. Inghilesi ◽  
P. Lanucara ◽  
P. Malguzzi ◽  
...  

Abstract. The coupling of a suite of meteorological limited area models with a wave prediction system based on the nesting of different wave models provides for medium-range sea state forecasts at the Mediterranean, regional and coastal scale. The new system has been operational at ISPRA since September 2012, after the upgrade of both the meteorological BOLAM model and large-scale marine components of the original SIMM forecasting system and the implementation of the new regional and coastal (WAM-SWAN coupling) chain of models. The coastal system is composed of nine regional-scale high-resolution grids, covering all Italian seas and six coastal grids at very high resolution, capable of accounting for the effects of the interaction between the incoming waves and the bathymetry. A preliminary analysis of the performance of the system is discussed here focusing on the ability of the system to simulate the mean features of the wave climate at the regional and sub-regional scale. The results refer to two different verification studies. The first is the comparison of the directional distribution of almost one year of wave forecasts against the known wave climate in northwestern Sardinia and central Adriatic Sea. The second is a sensitivity test on the effect on wave forecasts of the spatial resolution of the wind forcing, being the comparison between wave forecast and buoy data at two locations in the northern Adriatic and Ligurian Sea during several storm episodes in the period autumn 2012–winter 2013.


2019 ◽  
Vol 85 ◽  
pp. 07002 ◽  
Author(s):  
Alexandru Tatomir ◽  
Alexandru-Nicolae Dimache ◽  
Iancu Iulian ◽  
Martin Sauter

Geological storage of carbon dioxide represents a viable solution to reduce the greenhouse gases in the atmosphere. Romania has initiatives to build a large-scale integrated CO2 capture and storage demonstration project and find suitable on-shore and off-shore CO2 storage locations. Numerical simulators are essential tools helping the design process. These simulators are required to be capable to represent the complex thermo-hydro-mechanical-chemical and biological phenomena accompanying the geological CO2 storage such as, multi-phase flow, compositional effects due to dissolution of CO2 into the brine, non-isothermal effects due to cold CO2 injection, geomechanical effects, mineralization at the reservoir-scale. These processes can be simulated accurately and efficiently with DuMux (www.dumux.org), a free- and open-source simulator. This article presents and reviews briefly these mathematical and numerical models.


Author(s):  
Yatharth Ranjan ◽  
Zulqarnain Rashid ◽  
Callum Stewart ◽  
Maximilian Kerz ◽  
Mark Begale ◽  
...  

BACKGROUND With a wide range of use cases in both research and clinical domains, collecting continuous mobile health (mHealth) streaming data from multiple sources in a secure, highly scalable and extensible platform is of high interest to the open source mHealth community. The EU IMI RADAR-CNS program is an exemplar project with the requirements to support collection of high resolution data at scale; as such, the RADAR-base platform is designed to meet these needs and additionally facilitate a new generation of mHealth projects in this nascent field. OBJECTIVE Wide-bandwidth networks, smartphone penetrance and wearable sensors offer new possibilities for collecting (near) real-time high resolution datasets from large numbers of participants. We aimed to build a platform that would cater for large scale data collection for remote monitoring initiatives. Key criteria are around scalability, extensibility, security and privacy. METHODS RADAR-base is developed as a modular application, the backend is built on a backbone of the highly successful Confluent/Apache Kafka framework for streaming data. To facilitate scaling and ease of deployment, we use Docker containers to package the components of the platform. RADAR-base provides two main mobile apps for data collection, a Passive App and an Active App. Other 3rd Party Apps and sensors are easily integrated into the platform. Management user interfaces to support data collection and enrolment are also provided. RESULTS General principles of the platform components and design of RADAR-base are presented here, with examples of the types of data currently being collected from devices used in RADAR-CNS projects: Multiple Sclerosis, Epilepsy and Depression cohorts. CONCLUSIONS RADAR-base is a fully functional, remote data collection platform built around Confluent/Apache Kafka and provides off-the-shelf components for projects interested in collecting mHealth datasets at scale.


2015 ◽  
Vol 8 (3) ◽  
pp. 923-937 ◽  
Author(s):  
R. M. Maxwell ◽  
L. E. Condon ◽  
S. J. Kollet

Abstract. Interactions between surface and groundwater systems are well-established theoretically and observationally. While numerical models that solve both surface and subsurface flow equations in a single framework (matrix) are increasingly being applied, computational limitations have restricted their use to local and regional studies. Regional or watershed-scale simulations have been effective tools for understanding hydrologic processes; however, there are still many questions, such as the adaptation of water resources to anthropogenic stressors and climate variability, that can only be answered across large spatial extents at high resolution. In response to this grand challenge in hydrology, we present the results of a parallel, integrated hydrologic model simulating surface and subsurface flow at high spatial resolution (1 km) over much of continental North America (~ 6.3 M km2). These simulations provide integrated predictions of hydrologic states and fluxes, namely, water table depth and streamflow, at very large scale and high resolution. The physics-based modeling approach used here requires limited parameterizations and relies only on more fundamental inputs such as topography, hydrogeologic properties and climate forcing. Results are compared to observations and provide mechanistic insight into hydrologic process interaction. This study demonstrates both the feasibility of continental-scale integrated models and their utility for improving our understanding of large-scale hydrologic systems; the combination of high resolution and large spatial extent facilitates analysis of scaling relationships using model outputs.


2018 ◽  
Vol 187 ◽  
pp. 260-276 ◽  
Author(s):  
Florent Gasparin ◽  
Eric Greiner ◽  
Jean-Michel Lellouche ◽  
Olivier Legalloudec ◽  
Gilles Garric ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document