scholarly journals River predisposition to ice jams: a simplified geospatial model

2017 ◽  
Vol 17 (7) ◽  
pp. 1033-1045 ◽  
Author(s):  
Stéphane De Munck ◽  
Yves Gauthier ◽  
Monique Bernier ◽  
Karem Chokmani ◽  
Serge Légaré

Abstract. Floods resulting from river ice jams pose a great risk to many riverside municipalities in Canada. The location of an ice jam is mainly influenced by channel morphology. The goal of this work was therefore to develop a simplified geospatial model to estimate the predisposition of a river channel to ice jams. Rather than predicting the timing of river ice breakup, the main question here was to predict where the broken ice is susceptible to jam based on the river's geomorphological characteristics. Thus, six parameters referred to potential causes for ice jams in the literature were initially selected: presence of an island, narrowing of the channel, high sinuosity, presence of a bridge, confluence of rivers, and slope break. A GIS-based tool was used to generate the aforementioned factors over regular-spaced segments along the entire channel using available geospatial data. An ice jam predisposition index (IJPI) was calculated by combining the weighted optimal factors. Three Canadian rivers (province of Québec) were chosen as test sites. The resulting maps were assessed from historical observations and local knowledge. Results show that 77 % of the observed ice jam sites on record occurred in river sections that the model considered as having high or medium predisposition. This leaves 23 % of false negative errors (missed occurrence). Between 7 and 11 % of the highly predisposed river sections did not have an ice jam on record (false-positive cases). Results, limitations, and potential improvements are discussed.

Author(s):  
Stéphane De Munck ◽  
Yves Gauthier ◽  
Monique Bernier ◽  
Karem Chokmani ◽  
Serge Légaré

Abstract. The goal of this work was to develop a simplified geospatial model to estimate the predisposition of any river channel to ice jams. Rather than predicting river ice break up, the main question here was to predict where the broken up ice is susceptible to jam based on the river’s geomorphological characteristics. Thus, six parameters referred to potential causes for ice jams in the literature were selected: presence of an island, narrowing of the channel, high sinuosity, presence of a bridge, confluence of rivers, and slope break. A GIS-based tool has been used to generate the aforementioned factors over regular-spaced segments along the entire channel using available geospatial data. An "Ice Jam Predisposition Index" (IJPI) was calculated by combining the weighted optimal factors. Three Canadian rivers (Province of Quebec) have been chosen as test sites. The resulting maps were assessed from historical observations and local knowledge. Results show 77 % of the observed ice jam sites on record occurred in river sections that the model considered as having high or medium predisposition. This leaves 23 % of false negative errors (missed occurrence). Between 7 % and 11 % of the highly "predisposed" river sections did not have an ice jam on record (false-positive errors). Potential improvements are discussed.


1990 ◽  
Vol 17 (5) ◽  
pp. 675-685 ◽  
Author(s):  
Harold S. Belore ◽  
Brian C. Burrell ◽  
Spyros Beltaos

In Canada, flooding due to the rise in water levels upstream of an ice jam, or the temporary exceedance of the flow and ice-carrying capacity of a channel upon release of an ice jam, has resulted in the loss of human life and extensive economic losses. Ice jam mitigation is a component of river ice management which includes all activities carried out to prevent or remove ice jams, or to reduce the damages that may result from an ice jam event. This paper presents a brief overview of measures to mitigate the damaging effects of ice jams and contains a discussion on their application to Canadian rivers. Key words: controlled ice breakup, flood control, ice jams, ice management, river ice.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2891 ◽  
Author(s):  
Benoit Turcotte ◽  
Brian Morse ◽  
Gabriel Pelchat

In cold regions, every year, river-ice jams generate sudden, surprising, intense flooding that challenges the capacity of public security services. This type of flood is commonly unpredictable and often appears chaotic because its occurrence depends on multiple, interacting weather, hydrological, ice and morphological parameters. This paper presents the findings of a research project assessing how climate change impacts dynamic river-ice breakup and associated floods along seven rivers of the province of Quebec, Canada. A combination of empirical river-ice breakup models, state-of-the-art hydrological simulations and standardized climate projections was used to estimate the historical (1972–2000) and future (2042–2070) frequencies of dynamic breakup events. Ice jam flood damage reimbursement data were used to predict changes to financial risk associated with dynamic breakup events. Results show that, overall, ice-jam floods will generate more damage in the future, which justifies watershed-based flood adaptation plans that take into account cold regions hydrological processes. The success of the methodology also sets the table for a comparable project that would include more rivers from different regions of Northeastern America.


Author(s):  

Features of present-day channel deformations of the Tom' River within the Tomsk region and related processes of the ice jams’ formation have been considered. Recommendations about prevention of their negative consequences have been offered. They include organizational, scientific/information and engineering measures of the damages prevention against dangerous hydrological processes under consideration.


1992 ◽  
Vol 19 (2) ◽  
pp. 349-354
Author(s):  
S. Hebabi ◽  
N. El-Jabi ◽  
S. Sarraf

The problems associated with ice cover formation, development, and breakup are numerous. In fact, every year ice breakup and ice jams cause damage throughout Canada. In New Brunswick, ice breakup is responsible for 35% of floods and 70% of damage to bridges. This paper describes a hydro-meteorological analysis of ice breakup along the Nashwaak River in New Brunswick. Thirteen events that occur between 1969 and 1982 were studied. First, river records were used to determine a breakup initiation index. A dimensional analysis was then performed integrating the index with meteorological variables and river flows. Although there was no resemblance between variations of meteorological factors from one event to the next, the results suggest that the index formulated has potential as a tool for development of predictive models for ice breakup. Key words: ice breakup, ice jam, floods, meteorology, flow, predictive model, damages, bridges, Nashwaak River.


2007 ◽  
Vol 34 (6) ◽  
pp. 703-716 ◽  
Author(s):  
Spyros Beltaos

The breakup of the winter ice cover is a brief but seminal event in the regime of northern rivers, and in the life cycle of river and basin ecosystems. Breakup ice jams can cause extreme flood events, with major impacts on riverside communities, aquatic life, infrastructure, navigation, and hydropower generation. Related concerns are underscored by the issue of climate change and the faster warming that is predicted for northern parts of the globe. Advances in knowledge of breakup processes and related topics, achieved over the past 15 years or so, are outlined. They pertain to breakup initiation and ice-jam formation, ice-jam properties and numerical modelling of ice jams, waves generated by ice-jam releases, forecasting and mitigation methods, sediment transport, ecological aspects, and climate-change impacts. Major knowledge gaps are associated with the dynamic interaction of moving ice with the flow and with the stationary ice cover. Increasing computing capacity and remote sensing sophistication are expected to provide effective means for bridging these gaps. Key words: climate, ecology, forecasting, ice jam, modelling, onset, sediment, wave.


2021 ◽  
Author(s):  
Apurba Das ◽  
Karl-Erich Lindenschmidt

River ice is an important hydraulic and hydrological component of many rivers in the high northern latitudes of the world. It controls the hydraulic characteristics of streamflow, affects the geomorphology of channels, and can cause flooding due to ice-jam formation during ice-cover freeze-up and breakup periods. In recent decades, climate change has considerably altered ice regimes, affecting the severity of ice-jam flooding. Although many approaches have been developed to model river ice regimes and the severity of ice jam flooding, appropriate methods that account for impacts of the future climate on ice-jam flooding have not been well established. Therefore, the main goals of this study are to review the current knowledge of climate change impacts on river ice processes and to assess the current modelling capabilities to determine the severity of ice jams under future climatic conditions. Finally, a conceptual river ice-jam modelling approach is presented for incorporating climate change impacts on ice jams.


2006 ◽  
Vol 33 (9) ◽  
pp. 1227-1238 ◽  
Author(s):  
C Mahabir ◽  
F E Hicks ◽  
C Robichaud ◽  
A Robinson Fayek

Spring breakup on northern rivers can result in ice jams that present severe flood risk to adjacent communities. Such events can occur extremely rapidly, leaving little or no advanced warning to residents. Fort McMurray, Alberta, is one such community, and at present no forecasting model exists for this site. Many of the previous studies regarding ice jam flood forecasting methods, in general, cite the lack of a comprehensive database as an obstacle to statistical modelling. This paper documents the development of an extensive database containing 106 variables, and covering the period from 1972 to 2004, that was created for ice jam forecasting on the Athabasca River. Through multiple linear regression analysis, equations were developed to model the maximum water level during spring breakup. The optimal model contained a combination of hydrological and meteorological data collected from early fall until the day before river ice breakup. The number of historical years of data, rather than the scope of variables, was found to be the major limitation in verifying the results presented in this study.Key words: river ice, breakup jam, multiple linear regression.


2007 ◽  
Vol 34 (4) ◽  
pp. 539-548 ◽  
Author(s):  
Spyros Beltaos ◽  
Lindon Miller ◽  
Brian C Burrell ◽  
David Sullivan

The passage of river ice during the breakup event can have several effects on bridge structures. Design for ice passage at bridges has largely been empirical, such as the determination of superstructure clearance requirements based on historical stage data. As hydrologic and river ice processes in rivers are modified by climatic change, the use of empirical methods based on past observations and measurements could become less reliable. To advance beyond empiricism, it is necessary to develop rational design criteria based on a thorough understanding of the factors governing the interaction between bridges and ice. This concern applies especially during the breakup event when river flows, velocities, and hydrodynamic forces are usually higher and moving ice is thicker and stronger than during freeze-up. This paper provides guidance on the design of bridges to minimize ice impacts on the structure during the breakup period.Key words: breakup, bridges, design, forces, ice jam, impact, river ice, scour, waves.


1991 ◽  
Vol 18 (6) ◽  
pp. 933-939 ◽  
Author(s):  
Darryl J. Calkins

Ice control structures placed in the streamwise direction of a river were analyzed to determine the effectiveness in reducing ice jam thicknesses. The theory describing the thickness for “wide” river ice jams was modified to analyze these longitudinal types, providing the computational verification that ice jam thicknesses could be reduced where the mode of ice cover thickening is internal collapse. These longitudinal structures appear to provide a new tool for modifying the river ice regime at freeze-up and possibly at breakup. By decreasing the ice jam thicknesses, which leads to lower stages, the structures have the potential for decreasing ice jam flood levels. The structures' ability to function is independent of the flow velocity and these structures should perform in rivers with velocities greater than the usual limitation of roughly 1 m/s associated with conventional cross-channel ice booms. Other possible applications include controlling ice movement at outlets from lakes, enhancing river ice cover progression, or even restraining the ice cover at breakup. A U.S. patent application has been filed jointly by the author and the U.S. Army Corps of Engineers. Key words: river ice, ice jams, ice control, hydraulic structures, ice booms.


Sign in / Sign up

Export Citation Format

Share Document