scholarly journals Revisiting the synoptic-scale predictability of severe European winter storms using ECMWF ensemble reforecasts

2017 ◽  
Author(s):  
Florian Pantillon ◽  
Peter Knippertz ◽  
Ulrich Corsmeier

Abstract. New insights into the synoptic-scale predictability of 25 severe European winter storms of the 1995–2015 period are obtained using the homogeneous ensemble reforecast dataset from the European Centre for Medium-Range Weather Forecasts. The predictability of the storms is assessed with different metrics including the track and intensity to investigate the storms’ dynamics and the Storm Severity Index to estimate the impact of the associated wind gusts. The storms are correctly predicted by the ensemble reforecasts up to 2–4 days ahead only, which restricts the use of ensemble average and spread to short lead times. At longer lead times, the Extreme Forecast Index and Shift of Tails are computed from the deviation of the ensemble reforecasts from the model climate. Based on these indices, the model has some skill in forecasting the area covered by extreme wind gusts up to 10 days, which indicates clear potential for the early warning of storms. However, a large variability is found between the predictability of individual storms and does not appear to be related to the storms’ characteristics. This may be due to the limited sample of 25 cases, but also suggests that each severe storm has its own dynamics and sources of forecast uncertainty.

2017 ◽  
Vol 17 (10) ◽  
pp. 1795-1810 ◽  
Author(s):  
Florian Pantillon ◽  
Peter Knippertz ◽  
Ulrich Corsmeier

Abstract. New insights into the synoptic-scale predictability of 25 severe European winter storms of the 1995–2015 period are obtained using the homogeneous ensemble reforecast dataset from the European Centre for Medium-Range Weather Forecasts. The predictability of the storms is assessed with different metrics including (a) the track and intensity to investigate the storms' dynamics and (b) the Storm Severity Index to estimate the impact of the associated wind gusts. The storms are well predicted by the whole ensemble up to 2–4 days ahead. At longer lead times, the number of members predicting the observed storms decreases and the ensemble average is not clearly defined for the track and intensity. The Extreme Forecast Index and Shift of Tails are therefore computed from the deviation of the ensemble from the model climate. Based on these indices, the model has some skill in forecasting the area covered by extreme wind gusts up to 10 days, which indicates a clear potential for early warnings. However, large variability is found between the individual storms. The poor predictability of outliers appears related to their physical characteristics such as explosive intensification or small size. Longer datasets with more cases would be needed to further substantiate these points.


2019 ◽  
Vol 76 (4) ◽  
pp. 1077-1091 ◽  
Author(s):  
Fuqing Zhang ◽  
Y. Qiang Sun ◽  
Linus Magnusson ◽  
Roberto Buizza ◽  
Shian-Jiann Lin ◽  
...  

Abstract Understanding the predictability limit of day-to-day weather phenomena such as midlatitude winter storms and summer monsoonal rainstorms is crucial to numerical weather prediction (NWP). This predictability limit is studied using unprecedented high-resolution global models with ensemble experiments of the European Centre for Medium-Range Weather Forecasts (ECMWF; 9-km operational model) and identical-twin experiments of the U.S. Next-Generation Global Prediction System (NGGPS; 3 km). Results suggest that the predictability limit for midlatitude weather may indeed exist and is intrinsic to the underlying dynamical system and instabilities even if the forecast model and the initial conditions are nearly perfect. Currently, a skillful forecast lead time of midlatitude instantaneous weather is around 10 days, which serves as the practical predictability limit. Reducing the current-day initial-condition uncertainty by an order of magnitude extends the deterministic forecast lead times of day-to-day weather by up to 5 days, with much less scope for improving prediction of small-scale phenomena like thunderstorms. Achieving this additional predictability limit can have enormous socioeconomic benefits but requires coordinated efforts by the entire community to design better numerical weather models, to improve observations, and to make better use of observations with advanced data assimilation and computing techniques.


2015 ◽  
Vol 28 (15) ◽  
pp. 6297-6307 ◽  
Author(s):  
Charles Jones ◽  
Abheera Hazra ◽  
Leila M. V. Carvalho

Abstract The Madden–Julian oscillation (MJO) is the main mode of tropical intraseasonal variations and bridges weather and climate. Because the MJO has a slow eastward propagation and longer time scale relative to synoptic variability, significant interest exists in exploring the predictability of the MJO and its influence on extended-range weather forecasts (i.e., 2–4-week lead times). This study investigates the impact of the MJO on the forecast skill in Northern Hemisphere extratropics during boreal winter. Several 45-day forecasts of geopotential height (500 hPa) from NCEP Climate Forecast System version 2 (CFSv2) reforecasts are used (1 November–31 March 1999–2010). The variability of the MJO expressed as different amplitudes, durations, and recurrence (i.e., primary and successive events) and their influence on forecast skill is analyzed and compared against inactive periods (i.e., null cases). In general, forecast skill during enhanced MJO convection over the western Pacific is systematically higher than in inactive days. When the enhanced MJO convection is over the Maritime Continent, forecasts are lower than in null cases, suggesting potential model deficiencies in accurately forecasting the eastward propagation of the MJO over that region and the associated extratropical response. In contrast, forecasts are more skillful than null cases when the enhanced convection is over the western Pacific and during long, intense, and successive MJO events. These results underscore the importance of the MJO as a potential source of predictability on 2–4-week lead times.


2014 ◽  
Vol 53 (11) ◽  
pp. 2417-2429 ◽  
Author(s):  
S. C. Pryor ◽  
R. Conrick ◽  
C. Miller ◽  
J. Tytell ◽  
R. J. Barthelmie

AbstractThe scale and intensity of extreme wind events have tremendous relevance to determining the impact on infrastructure and natural and managed ecosystems. Analyses presented herein show the following. 1) Wind speeds in excess of the station-specific 95th percentile are coherent over distances of up to 1000 km over the eastern United States, which implies that the drivers of high wind speeds are manifest at the synoptic scale. 2) Although cold fronts associated with extratropical cyclones are a major cause of high–wind speed events, maximum sustained and gust wind speeds are only weakly dependent on the near-surface horizontal temperature gradient across the front. 3) Gust factors (GF) over the eastern United States have a mean value of 1.57 and conform to a lognormal probability distribution, and the relationship between maximum observed GF and sustained wind speed conforms to a power law with coefficients of 5.91 and −0.499. Even though there is coherence in the occurrence of intense wind speeds at the synoptic scale, the intensity and spatial extent of extreme wind events are not fully characterized even by the dense meteorological networks deployed by the National Weather Service. Seismic data from the USArray, a program within the Earthscope initiative, may be suitable for use in mapping high-wind and gust events, however. It is shown that the seismic channels exhibit well-defined spectral signatures under conditions of high wind, with a variance peak at frequencies of ~0.04 s−1 and an amplitude that appears to scale with the magnitude of observed wind gusts.


2006 ◽  
Vol 134 (10) ◽  
pp. 2877-2887 ◽  
Author(s):  
André Walser ◽  
Marco Arpagaus ◽  
Christof Appenzeller ◽  
Martin Leutbecher

Abstract This paper studies the impact of different initial condition perturbation methods and horizontal resolutions on short-range limited-area ensemble predictions for two severe winter storms. The methodology consists of 51-member ensembles generated with the global ensemble prediction system (EPS) of the European Centre for Medium-Range Weather Forecasts, which are downscaled with the nonhydrostatic limited-area model Lokal Modell. The resolution dependency is studied by comparing three different limited-area ensembles: (a) 80-km grid spacing, (b) 10-km grid spacing, and (c) 10-km grid spacing with a topography coarse grained to 80-km resolution. The initial condition perturbations of the global ensembles are based on singular vectors (SVs), and the tendencies are not perturbed (i.e., no stochastic physics). Two configurations are considered for the initial condition perturbations: (i) the operational SV configuration: T42 truncation, 48-h optimization time, and dry tangent-linear model, and (ii) the “moist SV” configuration: TL95 truncation, 24-h optimization time, and moist tangent-linear model. Lokal Modell ensembles are analyzed for the European winter storms Lothar and Martin, both occurring in December 1999, with particular attention paid to near-surface wind gusts. It is shown that forecasts using the moist SV configuration predict higher probabilities for strong wind gusts during the storm period compared to forecasts with the operational SV configuration. Similarly, the forecasts with increased horizontal resolution—even with coarse topography—lead to higher probabilities compared with the low-resolution forecasts. Overall, the two case studies suggest that currently developed operational high-resolution limited-area EPSs have a great potential to improve early warnings for severe winter storms, particularly when the driving global EPS employs moist SVs.


Author(s):  
Djordje Romanic

Tornadoes and downbursts cause extreme wind speeds that often present a threat to human safety, structures, and the environment. While the accuracy of weather forecasts has increased manifold over the past several decades, the current numerical weather prediction models are still not capable of explicitly resolving tornadoes and small-scale downbursts in their operational applications. This chapter describes some of the physical (e.g., tornadogenesis and downburst formation), mathematical (e.g., chaos theory), and computational (e.g., grid resolution) challenges that meteorologists currently face in tornado and downburst forecasting.


Author(s):  
Philip E. Bett ◽  
Gill M. Martin ◽  
Nick Dunstone ◽  
Adam A. Scaife ◽  
Hazel E. Thornton ◽  
...  

AbstractSeasonal forecasts for Yangtze River basin rainfall in June, May–June–July (MJJ), and June–July–August (JJA) 2020 are presented, based on the Met Office GloSea5 system. The three-month forecasts are based on dynamical predictions of an East Asian Summer Monsoon (EASM) index, which is transformed into regional-mean rainfall through linear regression. The June rainfall forecasts for the middle/lower Yangtze River basin are based on linear regression of precipitation. The forecasts verify well in terms of giving strong, consistent predictions of above-average rainfall at lead times of at least three months. However, the Yangtze region was subject to exceptionally heavy rainfall throughout the summer period, leading to observed values that lie outside the 95% prediction intervals of the three-month forecasts. The forecasts presented here are consistent with other studies of the 2020 EASM rainfall, whereby the enhanced mei-yu front in early summer is skillfully forecast, but the impact of midlatitude drivers enhancing the rainfall in later summer is not captured. This case study demonstrates both the utility of probabilistic seasonal forecasts for the Yangtze region and the potential limitations in anticipating complex extreme events driven by a combination of coincident factors.


2011 ◽  
Vol 139 (6) ◽  
pp. 1960-1971 ◽  
Author(s):  
Jakob W. Messner ◽  
Georg J. Mayr

Abstract Three methods to make probabilistic weather forecasts by using analogs are presented and tested. The basic idea of these methods is that finding similar NWP model forecasts to the current one in an archive of past forecasts and taking the corresponding analyses as prediction should remove all systematic errors of the model. Furthermore, this statistical postprocessing can convert NWP forecasts to forecasts for point locations and easily turn deterministic forecasts into probabilistic ones. These methods are tested in the idealized Lorenz96 system and compared to a benchmark bracket formed by ensemble relative frequencies from direct model output and logistic regression. The analog methods excel at longer lead times.


2003 ◽  
Vol 14 (04) ◽  
pp. 181-187 ◽  
Author(s):  
Christopher D. Bauch ◽  
Susan G. Lynn ◽  
Donald E. Williams ◽  
Michael W. Mellon ◽  
Amy L. Weaver

The impact of tinnitus and overall levels of distress were measured with three assessment tools for patients with tinnitus. The Tinnitus Handicap Inventory (THI), the Symptom Checklist-90-Revised (SCL-90-R) and an activities limitations questionnaire were administered to 53 audiology patients reporting tinnitus. Forty-three percent of these patients experienced either quality of life reductions associated with tinnitus, substantial perceived handicap, and/or a high level of distress. Results from the General Severity Index (GSI) of the SCL-90-R indicated that 25% of these patients displayed distress greater than that of the general medical population. The SCL-90-R can be a useful tool for audiologists working with tinnitus patients in assessing needs for referral for psychological or psychiatric counseling.


Sign in / Sign up

Export Citation Format

Share Document