scholarly journals Coastal flooding risk associated to tropical cyclones in a changing climate. Application to Port of Spain (Trinidad and Tobago)

Author(s):  
Cristina Izaguirre ◽  
Iñigo J. Losada ◽  
Antonio Espejo ◽  
Javier Diez-Sierra ◽  
Pedro Díaz-Simal

Abstract. The aim of this paper is to provide a methodology to assess flooding risk associated to the combination of extreme flooding levels driven by Tropical Cyclone (TCs) and relative sea level rise (RSLR). The approach is based on the risk conceptual framework where the hazard, exposure, and vulnerability are defined and combined to address flooding socioeconomic consequences in Port of Spain for present and future climate (RCP8.5 in 2050). Hazard and flooding impact are assessed using a combination of statistical methods and dynamical simulations, together with a high resolution Digital Elevation Model (DEM). Combining flooding maps, exposure databases and vulnerability damage functions we have evaluated socioeconomic consequences in terms of affected population and economic damage. Besides, we have quantified the uncertainty in the results coming from the sea level rise projections and vulnerability information. The application of the methodology indicates increasing flooding threat for the future climate that could exacerbate economic losses in case of inaction. The expected annual damage (EAD) in present climate is 12.24 MUSD while in 2050 it will reach 15.22 [14.88–15.67] MUSD.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Benjamin H. Strauss ◽  
Philip M. Orton ◽  
Klaus Bittermann ◽  
Maya K. Buchanan ◽  
Daniel M. Gilford ◽  
...  

AbstractIn 2012, Hurricane Sandy hit the East Coast of the United States, creating widespread coastal flooding and over $60 billion in reported economic damage. The potential influence of climate change on the storm itself has been debated, but sea level rise driven by anthropogenic climate change more clearly contributed to damages. To quantify this effect, here we simulate water levels and damage both as they occurred and as they would have occurred across a range of lower sea levels corresponding to different estimates of attributable sea level rise. We find that approximately $8.1B ($4.7B–$14.0B, 5th–95th percentiles) of Sandy’s damages are attributable to climate-mediated anthropogenic sea level rise, as is extension of the flood area to affect 71 (40–131) thousand additional people. The same general approach demonstrated here may be applied to impact assessments for other past and future coastal storms.


2020 ◽  
Vol 12 (9) ◽  
pp. 3737
Author(s):  
Osamu Nishiura ◽  
Makoto Tamura ◽  
Shinichiro Fujimori ◽  
Kiyoshi Takahashi ◽  
Junya Takakura ◽  
...  

Coastal areas provide important services and functions for social and economic activities. Damage due to sea level rise (SLR) is one of the serious problems anticipated and caused by climate change. In this study, we assess the global economic impact of inundation due to SLR by using a computable general equilibrium (CGE) model that incorporates detailed coastal damage information. The scenario analysis considers multiple general circulation models, socioeconomic assumptions, and stringency of climate change mitigation measures. We found that the global household consumption loss proportion will be 0.045%, with a range of 0.027−0.066%, in 2100. Socioeconomic assumptions cause a difference in the loss proportion of up to 0.035% without greenhouse gas (GHG) emissions mitigation, the so-called baseline scenarios. The range of the loss proportion among GHG emission scenarios is smaller than the differences among the socioeconomic assumptions. We also observed large regional variations and, in particular, the consumption losses in low-income countries are, relatively speaking, larger than those in high-income countries. These results indicate that, even if we succeed in stabilizing the global mean temperature increase below 2 °C, economic losses caused by SLR will inevitably happen to some extent, which may imply that keeping the global mean temperature increase below 1.5 °C would be worthwhile to consider.


1977 ◽  
Vol 9 (6) ◽  
pp. 643-652 ◽  
Author(s):  
B-C Liu ◽  
E S H Yu

The primary objective of this paper is to review critically the current state of research in the field of air pollution and its effect on vegetation and to derive, through existing data and documentation, a set of integrated economic damage functions of air pollution on various kinds of vegetation, for the purpose of prediction. Economic damage functions of vegetation were estimated via a stepwise least-squares regression method by relating economic losses of a variety of crops to air pollution and climatological variables. The crops and agricultural products selected included corn grain, soybean, cotton, root vegetables, other vegetables, nursery products, flowers, trees, field crops, and fruit and nuts. By utilizing the ‘average’ economic damage functions derived in this study, the changes in crop losses brought about by changes in the pollution or climatological variables can be predicted.


2021 ◽  
Author(s):  
Ralf Greve ◽  
Christopher Chambers ◽  
Reinhard Calov ◽  
Takashi Obase ◽  
Fuyuki Saito ◽  
...  

<p>The Coupled Model Intercomparison Project Phase 6 (CMIP6) is a major international climate modelling initiative. As part of it, the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) was devised to assess the likely sea-level-rise contribution from the Greenland and Antarctic ice sheets until the year 2100. This was achieved by defining a set of future climate scenarios by evaluating results of CMIP5 and CMIP6 global climate models (GCMs, including MIROC) over and surrounding the Greenland and Antarctic ice sheets. These scenarios were used as forcings for a variety of ice-sheet models operated by different working groups worldwide (Goelzer et al. 2020, doi: 10.5194/tc-14-3071-2020; Seroussi et al. 2020, doi: 10.5194/tc-14-3033-2020).</p><p>Here, we use the model SICOPOLIS to carry out extended versions of the ISMIP6 future climate experiments for the Greenland and Antarctic ice sheets until the year 3000. For the atmospheric forcing (anomalies of surface mass balance and temperature) beyond 2100, we sample randomly the ten-year interval 2091-2100, while the oceanic forcing beyond 2100 is kept fixed at 2100 conditions. We conduct experiments for the pessimistic, "business as usual" pathway RCP8.5 (CMIP5) / SSP5-8.5 (CMIP6), and for the optimistic RCP2.6 (CMIP5) / SSP1-2.6 (CMIP6) pathway that represents substantial emissions reductions. For the unforced, constant-climate control runs, both ice sheets are stable until the year 3000. For RCP8.5/SSP5-8.5, they suffer massive mass losses: For Greenland, ~1.7 m SLE (sea-level equivalent) for the 12-experiment mean, and ~3.5 m SLE for the most sensitive experiment. For Antarctica, ~3.3 m SLE for the 14-experiment mean, and ~5.3 m SLE for the most sensitive experiment. For RCP2.6/SSP1-2.6, the mass losses are limited to a two-experiment mean of ~0.26 m SLE for Greenland, and a three-experiment mean of ~0.25 m SLE for Antarctica. Climate-change mitigation during the next decades will therefore be an efficient means for limiting the contribution of the ice sheets to sea-level rise in the long term.</p>


2012 ◽  
Vol 18 (9) ◽  
pp. 2707-2719 ◽  
Author(s):  
Florian T. Wetzel ◽  
W. Daniel Kissling ◽  
Helmut Beissmann ◽  
Dustin J. Penn

2021 ◽  
Vol 11 (15) ◽  
pp. 6694
Author(s):  
Qing Sun ◽  
Rouzbeh Nazari ◽  
Maryam Karimi ◽  
MD Golam Rabbani Fahad ◽  
Robert W. Peters

Wastewater treatment plants (WWTPs) in the City of New York, United States, are particularly vulnerable to frequent extreme weather events, including storm surges, high-intensity rainfall, and sea level rise, and are also affected by the cascade of these events. The complex structural configuration of WWTPs requires very fine-scale flood risk assessment, which current research has not pursued. We propose a robust technique to quantify the risk of inundations for the fourteen WWPTs through an automated sub-basin creation tool; 889 sub-basins were generated and merged with high-resolution building footprint data to create a comprehensive database for flood inundation analysis. The inundation depths and extents for the WWTPs and flood-prone regions were identified from hydrodynamic modeling of storm surge and sea level rise. The economic damage due to flooding for the WWTPs was also quantified using the HAZUS-MH model. Results indicated that the storm surges from various categories of hurricanes have the dominant impacts on flood depths around WWTPs, followed by high-intensity rainfall. Sea level rise was shown to have a relatively minor impact on flood depths. Results from economic damage analysis showed that the WWTPs are subjected to damage ranging from USD 60,000 to 720,000, depending on the size of the WWTP and the extremity of storm surge. The method of analyzing the inundation status of the research object through the sub-basin enables more accurate data to be obtained when calculating the runoff. It allows for a clearer view of the inundation status of the WWTPs when combined with the actual buildings. Using this database, predicting flood conditions of any extreme event or a cascade of extreme events can be conducted quickly and accurately.


2020 ◽  
Vol 20 (4) ◽  
pp. 1025-1044 ◽  
Author(s):  
Timothy Tiggeloven ◽  
Hans de Moel ◽  
Hessel C. Winsemius ◽  
Dirk Eilander ◽  
Gilles Erkens ◽  
...  

Abstract. Coastal flood hazard and exposure are expected to increase over the course of the 21st century, leading to increased coastal flood risk. In order to limit the increase in future risk, or even reduce coastal flood risk, adaptation is necessary. Here, we present a framework to evaluate the future benefits and costs of structural protection measures at the global scale, which accounts for the influence of different flood risk drivers (namely sea-level rise, subsidence, and socioeconomic change). Globally, we find that the estimated expected annual damage (EAD) increases by a factor of 150 between 2010 and 2080 if we assume that no adaptation takes place. We find that 15 countries account for approximately 90 % of this increase. We then explore four different adaptation objectives and find that they all show high potential in cost-effectively reducing (future) coastal flood risk at the global scale. Attributing the total costs for optimal protection standards, we find that sea-level rise contributes the most to the total costs of adaptation. However, the other drivers also play an important role. The results of this study can be used to highlight potential savings through adaptation at the global scale.


Sign in / Sign up

Export Citation Format

Share Document