scholarly journals Interactive comment on “Water-level attenuation in broad-scale assessments of exposure to coastal flooding: a sensitivity analysis” by Athanasios T. Vafeidis et al.

Author(s):  
Anonymous
2020 ◽  
Vol 12 (20) ◽  
pp. 3419
Author(s):  
Tomás Fernández-Montblanc ◽  
Jesús Gómez-Enri ◽  
Paolo Ciavola

The knowledge of extreme total water levels (ETWLs) and the derived impact, coastal flooding and erosion, is crucial to face the present and future challenges exacerbated in European densely populated coastal areas. Based on 24 years (1993–2016) of multimission radar altimetry, this paper investigates the contribution of each water level component: tide, surge and annual cycle of monthly mean sea level (MMSL) to the ETWLs. It focuses on the contribution of the annual variation of MMSL in the coastal flooding extreme events registered in a European database. In microtidal areas (Black, Baltic and Mediterranean Sea), the MMSL contribution is mostly larger than tide, and it can be at the same order of magnitude of the surge. In meso and macrotidal areas, the MMSL contribution is <20% of the total water level, but larger (>30%) in the North Sea. No correlation was observed between the average annual cycle of monthly mean sea level (AMMSL) and coastal flooding extreme events (CFEEs) along the European coastal line. Positive correlations of the component variance of MMSL with the relative frequency of CFEEs extend to the Central Mediterranean (r = 0.59), North Sea (r = 0.60) and Baltic Sea (r = 0.75). In the case of positive MMSL anomalies, the correlation expands to the Bay of Biscay and northern North Atlantic (at >90% of statistical significance). The understanding of the spatial and temporal patterns of a combination of all the components of the ETWLs shall improve the preparedness and coastal adaptation measures to reduce the impact of coastal flooding.


2020 ◽  
Author(s):  
John Maskell

&lt;p&gt;Two case studies are considered in the UK, where uncertainty and drivers of coastal flood risk are explored through modelling and visualisations. Visualising the impact of uncertainty is a useful way of explaining the potential range of predicted or simulated flood risk to both expert and non-expert stakeholders.&lt;/p&gt;&lt;p&gt;Significant flooding occurred in December 2013 and January 2017 at Hornsea on the UK East Coast, where storm surge levels and waves overtopped the town&amp;#8217;s coastal defences. Uncertainty in the potential coastal flooding is visualised at Hornsea due to the range of uncertainty in the 100-year return period water level and in the calculated overtopping due to 3 m waves at the defences. The range of uncertainty in the simulated flooding is visualised through flood maps, where various combinations of the uncertainties decrease or increase the simulated inundated area by 58% and 82% respectively.&lt;/p&gt;&lt;p&gt;Located at the mouth of the Mersey Estuary and facing the Irish Sea, New Brighton is affected by a large tidal range with potential storm surge and large waves. Uncertainty in the coastal flooding at the 100-year return period due to the combination of water levels and waves is explored through Monte-Carlo analysis and hydrodynamic modelling. Visualisation through flood maps shows that the inundation extent at New Brighton varies significantly for combined wave and surge events with a joint probability of 100 years, where the total flooded area ranges from 0 m&lt;sup&gt;2&lt;/sup&gt; to 10,300 m&lt;sup&gt;2&lt;/sup&gt;. Waves are an important flood mechanism at New Brighton but are dependent on high water levels to impact the coastal defences and reduce the effective freeboard. The combination of waves and high-water levels at this return level not only determine the magnitude of the flood extent but also the spatial characteristics of the risk, whereby flooding of residential properties is dominated by overflow from high water levels, and commercial and leisure properties are affected by large waves that occur when the water level is relatively high at the defences.&lt;/p&gt;


2018 ◽  
Vol 7 (4.35) ◽  
pp. 323
Author(s):  
W.N.C.W. Zanial ◽  
M.A. Malek ◽  
N.A.A. Aziz

The current changes in climate have marked significant impacts in our daily weather. The changes have affected the trend, pattern and magnitude of rainfall-runoff as compared to the events commonly experienced. Flood is one of the effects of weather and climate change. Floods can be classified as one of the most devastating natural hazards and is a major concern to the country as it causes damages to human lives, environment, agriculture, land and structures. Therefore, effective flood planning and mitigation measures should be carried out in order to reduce the effects of flooding. Flood hazard map is one of the non-structural mitigation measures that can be used for planning purposes. Flood can be directly estimated or derived from frequency analysis when long duration of stream flow records is available. However, in the case of limited or no stream flow data available, design storm are generally used to estimate design flood. Downstream of Bertam Catchment is an ungauged river station where no flow records are available. Based on this limitation, in this study, design storm was used to design the flood map. Info Works RS was used to develop the flood model and sensitivity analysis of the design storm was performed. Results obtained in this study presented the comparison of flow between 100-years Annual Recurrence Interval (ARI) at various storm durations of 0.25hr, 0.5hr, 1hr, 3hrs, 6hrs, 12hrs, 1 day, 2days and 3 days. The maximum flow is found to be at 6hrs storm duration at 1103.418m3/s. Besides river flow, comparison of water level at 100-year ARI of various storm durations was also conducted. Results obtained from this study found that 24hrs storm duration will produce the highest water level at 1034.753m. By comparing the flow and water level, the result from river flow produces the maximum at 6hrs storm duration while the result of water level gives the maximum at 24hrs storm duration. Since, water level is preferable in producing flood hazard mapping at 2-D view, therefore, the storm duration is chosen based on results of sensitivity storm duration on water level conducted. Comparison is then conducted between 24-hrs storm duration at various ARIs. It can be concluded that 100-years ARI will lead to the maximum value of 1034.910m  water level. Suitable storm duration and Annual Recurrence Interval (ARI) are to be determined in order to produce the best flood hazard map. In this study, it is found that 100-years ARI and 24hrs storm duration are the best combination, performed based on water level.


1989 ◽  
Vol 20 (4-5) ◽  
pp. 293-304 ◽  
Author(s):  
Joakim Harlin

A comparison between the proposed Swedish spillway design floods and historic flood marks made at lake Siljan in central Sweden, is shown. Frequency analysis is performed incorporating pregauge information on water levels together with a sensitivity analysis of modelling assumptions. A water level of 0.42 to 0.75 metres above the highest historic flood mark (166.10 m.a.sl., 1659) was obtained when routing the design spring flood through lake Siljan. The design autumn flood lifted the lake to 1.56 to 1.52 metres below the highest flood mark. Return period for the design spring and autumn flood was estimated to about 1,000 years. The uncertainty in frequency analysis proved to have larger impact than modelling assumptions on estimating the risk of the design flood.


Author(s):  
Tsubasa Kodaira ◽  
Natacha Bernier ◽  
Keith R. Thompson

Abstract With the long-term goal of developing an ensemble forecast system for coastal flooding, we are developing a dynamically-based, numerical model of the global ocean. The model is based on the NEMO framework and has been used to predict global tides and surges in previous studies. This study focuses on the optimization of the joint prediction of both tides and surges, the two main components of total water level that cause coastal flooding. To improve the predictions of the tide we use a modified form of “spectral nudging”. We show this leads to significant improvements in the prediction of the M2 tide in the open ocean, and also in the shallow regions closer to shore where the model is not nudged. The median value of the vector difference of the tidal amplitude based on sea level observations and a data-assimilative model, and the predictions of our ocean model, is reduced from 11.2 cm to 2.66 cm by the nudging. The improvement deteriorates significantly however if additional tidal constituents are included in the model (most notably S2). This is explained in terms of spectral leakage between tidal bands associated with the nudging methodology and a straightforward solution is proposed.


2021 ◽  
Vol 11 (15) ◽  
pp. 7137
Author(s):  
Jinxi Liang ◽  
Wanghua Sui

This paper presents an improved slope stability sensitivity analysis (ISSSA) model that takes anchoring factors into consideration in umbrella-anchored sand and clay slopes under reservoir water level fluctuation. The results of the ISSSA model show that the slope inclination and the layout density of anchors are the main controlling factors for sand slope stability under fluctuation of the water level, while the slope inclination and water head height are the main controlling factors for slope stability in the Cangjiang bridge—Yingpan slope of Yunnan province in China. Moreover, there is an optimum anchorage angle, in the range of 25–45 degrees, which has the greatest influence on slope stability. The fluctuation of the reservoir water level is an important factor that triggers slope instability; in particular, a sudden drop in the surface water level can easily lead to landslides; therefore, corresponding measures should be implemented in a timely manner in order to mitigate landslide disasters.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 719
Author(s):  
Antoifi Abdoulhalik ◽  
Ashraf A. Ahmed ◽  
Abdelrahman M. Abdelgawad ◽  
G. A. Hamill

Laboratory and numerical experiments were conducted to provide a quantitative steady-state analysis of the effect of incremental variations of water level on saltwater intrusion. The purpose was to seek mathematical correlations relating both the wedge toe length and the height along the coastline to the boundary head difference. The laboratory experiments were completed in a 2D sand tank where both freshwater and seawater levels were varied. The experiments were conducted for two bead sizes having different hydraulic conductivities. The numerical model SEAWAT was used to validate the results and then to perform sensitivity analysis. The experimental results show that at steady-state conditions, the logarithmic toe length could be expressed as a linear function of the boundary head difference. The linear relationship was recorded in both advancing and receding wedge phases. The linearity of the correlation was also well demonstrated with analytical solutions. Similar relationships were also derived in the scenarios where the sea level fluctuated while the freshwater boundary head was constant. The height of the saltwater wedge along the coastline was also found to be a linear function of the boundary head difference. The sensitivity analysis shows that the regression coefficients were sensitive to the hydraulic conductivity, the dispersivity, and the saltwater density, while the porosity and the rate of boundary head change induced negligible effects. The existence of a linear relationship between the logarithmic toe length and the boundary head difference was also well evidenced in a field-scale aquifer model for all the different hydrogeological aquifer conditions tested. This study is the first attempt in identifying the underlying correlation between the boundary water level variations and the main seawater intrusion (SWI) external metrics under controlled laboratory conditions, which is of great relevance from a water resources management perspective.


Sign in / Sign up

Export Citation Format

Share Document