scholarly journals Experimental assessment of the relationship between rainfall intensity and sinkholes caused by damaged sewer pipes

2020 ◽  
Author(s):  
Tae-Young Kwak ◽  
Sang-Inn Woo ◽  
Choong-Ki Chung ◽  
Joonyoung Kim

Abstract. In several countries, the rising occurrence of sinkholes has led to severe social and economic damage. Based on the mechanism of sinkhole development, researchers have investigated the correlation between rainfall intensity and sinkholes caused by damaged sewer pipes. In this study, the effect of rainfall intensity on the formation of eroded zones, as well as the occurrence of sinkholes caused by soil erosion due to groundwater infiltration through pipe defects, has been analyzed through model tests. The ground in Seoul was adopted using weathered granite soil, which is generally used for backfill sewer pipes, and groundwater levels corresponding to three different rainfall intensity conditions were considered. The ground level changes and ground displacements were measured continuously, and the particle image velocimetry (PIV) algorithm was applied to measure the displacement at each position of the model ground. The results indicate that impeding the excessive rise of groundwater levels by securing sufficient sewage treatment facilities can effectively prevent the development of sinkholes caused by pipe defects.

2020 ◽  
Vol 20 (12) ◽  
pp. 3343-3359
Author(s):  
Tae-Young Kwak ◽  
Sang-Inn Woo ◽  
Choong-Ki Chung ◽  
Joonyoung Kim

Abstract. In several countries, the rising occurrence of sinkholes has led to severe social and economic damage. Based on the mechanism of sinkhole development, researchers have investigated the correlation between rainfall intensity and sinkholes caused by damaged sewer pipes. In this study, the effect of rainfall intensity on the formation of eroded zones, as well as the occurrence of sinkholes caused by soil erosion due to groundwater infiltration through pipe defects, has been analyzed through model tests. The ground materials in Seoul were represented by weathered granite soil, which is generally used for backfill sewer pipes, and groundwater levels corresponding to three different rainfall intensity conditions were considered. The ground level changes and ground displacements were measured continuously, and the particle image velocimetry (PIV) algorithm was applied to measure the displacement at each position of the model ground. The results indicate that impeding the excessive rise in groundwater levels by securing sufficient sewage treatment facilities can effectively prevent the development of sinkholes caused by pipe defects.


2020 ◽  
Vol 36 (2) ◽  
pp. 86-98
Author(s):  
A.A. Sergeeva ◽  
G.V. Ovechkina ◽  
A.Yu. Maksimov

Bacterial strains capable of degradation of 0.8-15.8 g/1 pyridine hydrochloride have been isolated from activated sludge of municipal biological treatment plants in Perm (BOS) and local treatment facilities of the LUKOIL-Permnefteorgsintez enterprise (PNOS). The strains were identified as Achromobacter pulmonis and Burkholderia dolosa. The optimal pyridine concentration for the growth of the isolated strains was 4.0 g/1. The pyridine degradation during the A. pulmonis PNOS and B. dolosa BOS cultivation on a medium with ammonium chloride and glucose and without additional nitrogen or carbon sources was studied. It was shown that the strains are able to accumulate biomass in a medium with pyridine as the sole carbon and nitrogen source; the addition of glucose to the medium (1 g/L) accelerated the pyridine degradation by A. pulmonis PNOS, but inhibited the process carried out by B. dolosa BOS. B. dolosa BOS and A. pulmonis PNOS biofilms efficiently utilized pyridine during growth on basalt and carbon fibers; the highest rate of pyridine utilization (1.8 g /(L day)) was observed in A. pulmonis PNOS biofilms on basalt fibers. pyridine, biodegradation, activated sludge, biofilms, Achromobacter pulmonis, Burkholderia dolosa The authors grateful to Dr. I.I. Tchaikovsky, Head of the Laboratory of Geology of Mineral Deposits of the Mining Institute, a branch of the Perm Federal Research Center, for help with electron microscopy of the samples. This work was carried out as part of a state assignment on the topic « Study of the Functional and Species Diversity of Microorganisms Useful for Ecocenoses and Human Practical Activity», registration number R&D AAAA-A19-119112290008-4.


2021 ◽  
Vol 11 (7) ◽  
pp. 2995
Author(s):  
Tae-Hwan Kim ◽  
In-Mo Lee ◽  
Hee-Young Chung ◽  
Jeong-Jun Park ◽  
Young-Moo Ryu

Soil conditioning is a key factor in increasing tunnel face stability and extraction efficiency of excavated soil when excavating tunnels using an earth pressure balance (EPB) shield tunnel boring machine (TBM). Weathered granite soil, which is abundant in the Korean Peninsula (also in Japan, Hong Kong, and Singapore), has different characteristics than sand and clay; it also has particle-crushing characteristics. Conditioning agents were mixed with weathered granite soils of different individual particle-size gradations, and three characteristics (workability, permeability, and compressibility) were evaluated to find an optimal conditioning method. The lower and upper bounds of the water content that are needed for a well-functioning EPB shield TBM were also proposed. Through a trial-and-error experimental analysis, it was confirmed that soil conditioning using foam only was possible when the water content was controlled within the allowable range, that is, between the upper and lower bounds; when water content exceeded the upper bound, soil conditioning with solidification agents was needed along with foam. By taking advantage of the particle-crushing characteristics of the weathered granite soil, it was feasible to adopt the EPB shield TBM even when the soil was extremely coarse and cohesionless by conditioning with polymer slurries along with foam. Finally, the application ranges of EPB shield TBM in weathered granite soil were proposed; the newly proposed ranges are wider and expanded to coarser zones compared with those proposed so far.


2012 ◽  
Vol 424-425 ◽  
pp. 1334-1337
Author(s):  
Rong Jun Su

Through the extensive research and deep analysis of existing problems in cleaner production, four middle/high expense plans were set forth, demonstrated and implemented. These four implement plans included high efficient steam traps, energy saving system of steam boiler, improved sewage treatment facilities and vacuum raw material feeder. The total investment was 330 thousand Yuan RMB. The annual discharge of waste water was reduced by about 30 thousand tons and annual economic profit was 680 thousand Yuan RMB. Moreover, better environmental and social benefit was created. More importantly, a sustainable cleaner production mechanism was established for the factory.


2012 ◽  
Vol 55 (4) ◽  
Author(s):  
Lisa Borgatti ◽  
Antonio Edoardo Bracci ◽  
Stefano Cremonini ◽  
Giovanni Martinelli

<p>In 2012, a seismic sequence occurred in the lowlands of the Emilia-Romagna Region (northern Italy), between the borders of the Modena, Ferrara and Bologna Provinces. It consisted of seven mainshocks (5.9 &gt; Ml &gt; 5) that were recorded between May 20 and 29, 2012 [INGV 2012a] and 2,200 minor earthquakes [INGV 2012b]. An interferometric analysis [Bignami et al. 2012, Salvi et al. 2012, this volume] highlighted three main deformation areas, each of which was 12 km wide (from S to N) and 10 km to 20 km long in an ESE-WNW to E-W direction, thus affecting an area of about 600 km2 (Figure 1). Field and aerial geological surveys recorded numerous surficial effects, such as: (i) sediment liquefaction [Crespellani et al. 2012]; (ii) localized ground fissures resembling surficial faulting [Fioravante and Giretti 2012] (Figure 2); (iii) groundwater levels rising up to 400 cm above the local ground level in phreatic wells during the mainshocks (lower values were observed in confined aquifers); and (iv) dormancy of previously known sinkholes [Borgatti et al. 2010, Cremonini 2010a, and references therein]. Some of the observed surface phenomena were previously recorded as coseismic effects during the earthquakes of Ferrara (1570) and Argenta (1624) [Boschi et al. 1995, Galli 2000], together with the early rising of the water level of the Po River in the Stellata section. […]</p>


2022 ◽  
Vol 23 (1) ◽  
pp. 240-251
Author(s):  
Kairat Ospanov ◽  
Erzhan Kuldeyev ◽  
Bagdaulet Kenzhaliyev ◽  
Anatoly Korotunov

1997 ◽  
Vol 26 (5) ◽  
pp. 308-313
Author(s):  
Takeshi MATSUNAMI ◽  
Kikuji HAMADA

1991 ◽  
Vol 24 (9) ◽  
pp. 205-213 ◽  
Author(s):  
S. B. Niedrum ◽  
A. Karioun ◽  
D. D. Mara ◽  
S. W. Mills

Reuse of wastewater for crop irrigation is essential to sustain agricultural growth in a country such as Morocco where water resources are scarce due to the hot, arid climate. However few towns in Morocco have sewage treatment facilities and reuse with untreated wastewater is therefore widespread, and the public health risks from excreta related disease high. A suitable treatment system to provide safe water for irrigation is the use of waste stabilisation ponds, which provide an effluent high in microbiological quality and also high in fertilizer value due to the large amounts of algae which are normally discharged. It was therefore decided to implement an integrated waste stabilisation pond, effluent reuse system as a demonstration scheme of the advantages, both in terms of improved crop productivity and public health of the local community. The town of Boujad in Kouribga Province was selected as a suitable site and this paper describes the background to the development.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Atsushi Kubo ◽  
Jota Kanda

AbstractThe carbon budget of Tokyo Bay, a highly urbanized coastal basin, was estimated using a box model that incorporated inorganic and organic carbon data over an annual cycle (2011–2012). The surface water represented net autotrophic system in which the annual net community production (NCP) was 19 × 1010 gC year−1. The annual loading of dissolved inorganic carbon and total organic carbon (TOC) from freshwater inputs was 11.2 × 1010 and 4.9 × 1010 gC year−1, respectively. The annual TOC sedimentation rate was 3.1 × 1010 gC year−1, similar to the annual air–sea CO2 uptake (5.0 × 1010 gC year−1). Although the NCP and TOC loading from freshwater inputs were respectively 3.0 and 2.7 times lower than those in the 1970s, the TOC sedimentation rate was similar. Therefore, a relatively high carbon efflux from Tokyo Bay likely occurred in the 1970s, including CO2 efflux to the atmosphere and/or export of labile organic carbon to the open ocean. The changes in carbon flow between the 1970s and 2011–2012 resulted from improved water quality due to increased sewage treatment facilities and improved sewage treatment efficiency in the catchment, which decreased the amount of labile organic carbon flowing into the bay.


Sign in / Sign up

Export Citation Format

Share Document