scholarly journals Numerical experiments of storm winds, surges, and waves on the southern coast of Korea during Typhoon Sanba: the role of revising wind force

2014 ◽  
Vol 2 (8) ◽  
pp. 5315-5360
Author(s):  
J. J. Yoon ◽  
J. S. Shim ◽  
K. S. Park ◽  
J. C. Lee

Abstract. The southern coastal area of Korea has often been damaged by storm surges and waves, due to the repeated approach of strong typhoons every year. The integrated model system is applied to simulate typhoon-induced winds, storm surges, and surface waves in this region during Typhoon Sanba in 2012. The TC96 (planetary boundary layer model) wind model is used for atmospheric forcing and is modified to incorporate the effect of the land's roughness on the typhoon wind. Numerical experiments are carried out to investigate the effects of land-dissipated wind on storm surges and waves using a three dimensional, unstructured grid, Finite Volume Coastal Ocean Model (FVCOM), which includes integrated storm surge and wave models with highly refined grid resolutions along the coastal region of complex geometry and topography. Compared to the measured data, the numerical models have successfully simulated storm winds, surges, and waves. Better agreement between the simulated and measured storm winds has been found when considering the effect of wind dissipation by land roughness. In addition, this modified wind force leads to clearly improved results in storm surge simulations, whereas the wave results have shown only slight improvement. The study results indicate that the effect of land dissipation on wind force plays a significant role in the improvement of water level modeling inside coastal areas.

2014 ◽  
Vol 14 (12) ◽  
pp. 3279-3295 ◽  
Author(s):  
J. J. Yoon ◽  
J. S. Shim ◽  
K. S. Park ◽  
J. C. Lee

Abstract. The southern coastal area of Korea has often been damaged by storm surges and waves due to the repeated approach of strong typhoons every year. The integrated model system is applied to simulate typhoon-induced winds, storm surges, and surface waves in this region during Typhoon Sanba in 2012. The TC96 planetary boundary layer wind model is used for atmospheric forcing and is modified to incorporate the effect of the land's roughness on the typhoon wind. Numerical experiments are carried out to investigate the effects of land-dissipated wind on storm surges and waves using the three-dimensional, unstructured grid, Finite Volume Coastal Ocean Model (FVCOM), which includes integrated storm surge and wave models with highly refined grid resolutions along the coastal region of complex geometry and topography. Compared to the measured data, the numerical models have successfully simulated storm winds, surges, and waves. Better agreement between the simulated and measured storm winds has been found when considering the effect of wind dissipation by land roughness. In addition, this modified wind force leads to clearly improved results in storm surge simulations, whereas the wave results have shown only slight improvement. The study results indicate that the effect of land dissipation on wind force plays a significant role in the improvement of water level modeling inside coastal areas.


2021 ◽  
Vol 9 (5) ◽  
pp. 458
Author(s):  
Dongdong Chu ◽  
Haibo Niu ◽  
Wenli Qiao ◽  
Xiaohui Jiao ◽  
Xilin Zhang ◽  
...  

In this paper, a three-dimensional storm surge model was developed based on the Finite Volume Community Ocean Model (FVCOM) by the hindcasts of four typhoon-induced storm surges (Chan-hom, Mireille, Herb, and Winnie). After model validation, a series of sensitivity experiments were conducted to explore the effects of key parameters in the wind and pressure field (forward speed, radius of maximum wind (RMW), inflow angle, and central pressure), typhoon path, wind intensity, and topography on the storm surge and surge asymmetry between sea level rise (positive surge) and fall (negative surge) along the southeastern coast of China (SCC). The model results show that lower central pressure and larger RMW could lead to stronger surge asymmetry. A larger inflow angle results in a stronger surge asymmetry. In addition, the path of Chan-hom is the most dangerous path type for the Zhoushan Archipelago area, and that of Winnie follows next. The model results also indicate that the non-linear interaction between wind field and pressure field tends to weaken the peak surge elevation. The effect of topography on storm surges indicates that the peak surge elevation and its occurrence time, as well as the surge asymmetry, increase with a decreasing slope along the SCC.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yumei Ding ◽  
Lei Ding

A hindcast of typical extratropical storm surge occurring in the Bohai Sea in October 2003 is performed using a three-dimensional (3D) Finite Volume Coastal Ocean Model (FVCOM). The storm surge model is forced by 10 m winds obtained from the Weather Research Forecasting (WRF) model simulation. It is shown that the simulated storm surge and tides agree well with the observations. The nonlinear interaction between the surge and astronomical tides, the spatial distribution of the maximum surge level, and the hydrodynamic response to the storm surge are studied. The storm surge is the interaction of the surge and the astronomical tides. The currents change rapidly during the storm surge and turn to be the unidirectional at some places where the tidal currents are usually rectilinear. The results show that the local surge current velocity in each depth, with a magnitude of the same order as the astronomic tidal currents, increases or decreases rapidly depending on the relationship between the winds and current directions. Furthermore, the current pattern gets more complicated under the influence of the direction of the winds, which might affect sand movement in the coastal water of the Bohai Sea.


2020 ◽  
Vol 8 (6) ◽  
pp. 411
Author(s):  
Zhaoqing Yang ◽  
Taiping Wang ◽  
Ziyu Xiao ◽  
Levi Kilcher ◽  
Kevin Haas ◽  
...  

Numerical models have been widely used for the resource characterization and assessment of tidal instream energy. The accurate assessment of tidal stream energy resources at a feasibility or project-design scale requires detailed hydrodynamic model simulations or high-quality field measurements. This study applied a three-dimensional finite-volume community ocean model (FVCOM) to simulate the tidal hydrodynamics in the Passamaquoddy–Cobscook Bay archipelago, with a focus on the Western Passage, to assist tidal energy resource assessment. IEC Technical specifications were considered in the model configurations and simulations. The model was calibrated and validated with field measurements. Energy fluxes and power densities along selected cross sections were calculated to evaluate the feasibility of the tidal energy development at several hotspots that feature strong currents. When taking both the high current speed and water depth into account, the model results showed that the Western Passage has great potential for the deployment of tidal energy farms. The maximum extractable power in the Western Passage was estimated using the Garrett and Cummins method. Different criteria and methods recommended by the IEC for resource characterization were evaluated and discussed using a sensitivity analysis of energy extraction for a hypothetical tidal turbine farm in the Western Passage.


2020 ◽  
Vol 12 (22) ◽  
pp. 3723 ◽  
Author(s):  
Qingrong Liu ◽  
Chengqing Ruan ◽  
Jingtian Guo ◽  
Jian Li ◽  
Xihu Lian ◽  
...  

Rapidly developing cities could require an urgent hazard assessment to ensure the protection of their economy and population against natural disasters. However, these cities that have rapidly developed should have historical records of observations that are too short to provide sufficient data information for such an assessment. This study used ocean numerical models (i.e., Finite-Volume Community Ocean Model (FVCOM) and Parabolic Mild-Slope Wave Module (MIKE 21 PMS) to reconstruct data for a storm surge hazard assessment of the levee at Weifang (China). LiDAR (Light Detection and Ranging) data were also used to obtain 3D point cloud data and the structure of the levee. The designed levee height was calculated based on the simulations and 3D point cloud data, and the results were compared with measured heights to evaluate whether the levee is sufficiently high to satisfy the safety requirement. The findings of this work will enhance the marine disaster prevention capacity of the region and could help reduce economic losses associated with marine-related disasters. The results could also provide support for future work on disaster prevention in the field of coastal marine engineering.


Author(s):  
David F. Kelly ◽  
Ewelina Luczko ◽  
Michael Fullarton ◽  
Yahia Kala

In this paper we present the results of a multimodel approach to simulating the recent storm surges due to hurricanes Irma and Maria. The study focuses on Puerto Rico which, as a consequence of hurricane Maria, experienced storm surge around the entire perimeter of the island. In this study the storm tide is modeled using a variety of state-of-the-art 2DH numerical models. All models are based on the long wave assumption and employ the Non-Linear Shallow Water (NLSW) equations. The models vary according to the form of the governing NLSW equations that they employ. Differences include linearization and primitive variable or conserved variable (divergence) form. The numerical solution techniques used to solve the governing equations, as well as the options available for the wind, pressure, tidal forcing terms and wetting/drying techniques also vary between (and within) the models.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 96
Author(s):  
Wei-Ting Chao ◽  
Chih-Chieh Young

Storm surges are one of the most devastating coastal disasters. Numerous efforts have continuously been made to achieve better prediction of storm surge variation. In this paper, we propose a parametric cyclone and neural network hybrid model for accurate, long lead-time storm surge prediction. The model was applied to the northeastern coastal region of Taiwan, i.e., Longdong station. A total of 14 historical typhoon events were used for model training and validation, and the results and questions associated with this hybrid approach carefully discussed. Overall, the proposed method reduced the complexity of network structure while retaining the important typhoon indicators. In particular, local pressure and winds estimated from the storm parameters through physically-based parametric cyclone models allow for inferring the possible future influence of a typhoon, unlike the simple collection and direct usage of observation data from local stations in earlier works. Meanwhile, the error-tolerance capability of the neural network alleviated some discrepancy in the model inputs and enabled good surge prediction. Further, the proposed method showed better and faster convergence thanks to the retention of storm information and the reduced dimensions of the search space. The hybrid model presented excellent performance or maintained reasonable capability for short lead-time and long lead-time storm surge prediction. Compared with the pure neural network model under the same network dimensions, the present model demonstrated great improvement in accuracy as the prediction lead time increased to 8 h, e.g., 33–40% (13–21%) and 32–37% (18–29%) RMSE and CE, respectively, in the training/validation phase.


2014 ◽  
Vol 8 (1) ◽  
pp. 151-156 ◽  
Author(s):  
Yumei Ding ◽  
Hao Wei

A hindcast of typical extratropical storm surge occurring in the Bohai Sea in Oct. 2003 is performed using a three-dimensional storm surge model system based on Finite-Volume Coastal Ocean Model (FVCOM). The surface winds are obtained from the WRF data set. Some preliminary sensitivity studies of the influential factors affecting the storm surge simulation in the Bohai Sea are conducted with the high revolution numerical model of storm surge. The factors of tide-surge interaction, the wind stress, the water depth, the bottom drag coefficient and the critical depth in the model are studied. After considering the tide-wind interaction and the severe wind, the most important influential factor affecting the storm surge in the Bohai Sea is the bottom drag coefficient. These sensitivity studies indicate that the storm surge simulations depend critically on the parameterizations. Hence additional experimental guidance is required on the bottom drag coefficient. This study is useful for the storm surge simulation in order to select the proper parameter to make possible a good conservation behavior of the storm surge model.


2011 ◽  
Vol 217 (21) ◽  
pp. 8640-8654 ◽  
Author(s):  
N. Aschariyaphotha ◽  
P. Wongwises ◽  
U.W. Humphries ◽  
S. Wongwises

Sign in / Sign up

Export Citation Format

Share Document