scholarly journals Ventilation of the Mediterranean Sea constrained by multiple transient tracer measurements

2013 ◽  
Vol 10 (5) ◽  
pp. 1647-1705 ◽  
Author(s):  
T. Stöven ◽  
T. Tanhua

Abstract. Ventilation is the prime pathway for ocean surface perturbations, such as temperature anomalies, to be relayed to the ocean interior. It is also the conduit for gas exchange between atmosphere and ocean and thus the mechanism whereby, for instance, the interior ocean is oxygenated and enriched in anthropogenic carbon. The ventilation of the Mediterranean Sea is fast in comparison to the world ocean and has large temporal variability, so that quantification of Mediterranean Sea ventilation rates is challenging and very relevant for Mediterranean oceanography and biogeochemistry. Here we present transient tracer data from a field-campaign in April 2011 that sampled a unique suite of transient tracers (SF6, CFC-12, tritium and 3He) in all major basins of the Mediterranean. We apply the Transit Time Distribution (TTD) model to the data which then constrain the mean age, the ratio of the advective/diffusive transport mechanism, and the presence, or not, of more than one significant (for ventilation) water mass. We find that the eastern part of the Eastern Mediterranean can be reasonable described with a one dimensional Inverse Gaussian (1IG) TTD, and thus constrained with two independent tracers. The ventilation of the Ionian Sea and the Western Mediterranean can only be constrained by a multidimensional TTD. We approximate the ventilation with a two-dimensional Inverse Gaussian (2IG) TTD for these areas and demonstrate one way of constraining a 2IG-TTD from the available transient tracer data. The deep water in the Ionian Sea has higher mean ages than the deep water of the Levantine Basin despite higher transient tracer concentrations. This is partly due to the deep water of Adriatic origin having more diffusive properties in the transport and formation, i.e. a high ratio of diffusion over advection, compared to the deep water of Aegean Sea origin that still dominates the deep Levantine Basin deep water after the Eastern Mediterranean Transient (EMT) in the early 1990s. We also show that the deep Western Mediterranean has approximately 40% contribution of recently ventilated deep water from the Western Mediterranean Transition (WMT) event of the mid-2000s. The deep water has higher transient tracer concentrations than the mid-depth water, but the mean age is similar.

Ocean Science ◽  
2014 ◽  
Vol 10 (3) ◽  
pp. 439-457 ◽  
Author(s):  
T. Stöven ◽  
T. Tanhua

Abstract. Ventilation is the primary pathway for atmosphere–ocean boundary perturbations, such as temperature anomalies, to be relayed to the ocean interior. It is also a conduit for gas exchange between the interface of atmosphere and ocean. Thus it is a mechanism whereby, for instance, the ocean interior is oxygenated and enriched in anthropogenic carbon. The ventilation of the Mediterranean Sea is fast in comparison to the world ocean and has large temporal variability. Here we present transient tracer data from a field campaign in April 2011 that sampled a unique suite of transient tracers (SF6, CFC-12, 3H and 3He) in all major basins of the Mediterranean. We apply the transit time distribution (TTD) model to the data in order to constrain the mean age, the ratio of the advective / diffusive transport and the number of water masses significant for ventilation. We found that the eastern part of the eastern Mediterranean can be reasonably described with a one-dimensional inverse Gaussian TTD (IG-TTD), and thus constrained with two independent tracers. The ventilation of the Ionian Sea and the western Mediterranean can only be constrained by a linear combination of IG-TTDs. We approximate the ventilation with a one-dimensional, two inverse Gaussian TTD (2IG-TTD) for these areas and demonstrate a possibility of constraining a 2IG-TTD from the available transient tracer data. The deep water in the Ionian Sea has a mean age between 120 and 160 years and is therefore substantially older than the mean age of the Levantine Basin deep water (60–80 years). These results are in contrast to those expected by the higher transient tracer concentrations in the Ionian Sea deep water. This is partly due to deep water of Adriatic origin having more diffusive properties in transport and formation (i.e., a high ratio of diffusion over advection), compared to the deep water of Aegean Sea origin that still dominates the deep Levantine Basin deep water after the Eastern Mediterranean Transient (EMT) in the early 1990s. The tracer minimum zone (TMZ) in the intermediate of the Levantine Basin is the oldest water mass with a mean age up to 290 years. We also show that the deep western Mediterranean has contributed approximately 40% of recently ventilated deep water from the Western Mediterranean Transition (WMT) event of the mid-2000s. The deep water has higher transient tracer concentrations than the mid-depth water, but the mean age is similar with values between 180 and 220 years.


Ocean Science ◽  
2014 ◽  
Vol 10 (1) ◽  
pp. 1-16 ◽  
Author(s):  
A. Schneider ◽  
T. Tanhua ◽  
W. Roether ◽  
R. Steinfeldt

Abstract. Significant changes in the overturning circulation of the Mediterranean Sea has been observed during the last few decades, the most prominent phenomena being the Eastern Mediterranean Transient (EMT) in the early 1990s and the Western Mediterranean Transition (WMT) during the mid-2000s. During both of these events unusually large amounts of deep water were formed, and in the case of the EMT, the deep water formation area shifted from the Adriatic to the Aegean Sea. Here we synthesize a unique collection of transient tracer (CFC-12, SF6 and tritium) data from nine cruises conducted between 1987 and 2011 and use these data to determine temporal variability of Mediterranean ventilation. We also discuss biases and technical problems with transient tracer-based ages arising from their different input histories over time; particularly in the case of time-dependent ventilation. We observe a period of low ventilation in the deep eastern (Levantine) basin after it was ventilated by the EMT so that the age of the deep water is increasing with time. In the Ionian Sea, on the other hand, we see evidence of increased ventilation after year 2001, indicating the restarted deep water formation in the Adriatic Sea. This is also reflected in the increasing age of the Cretan Sea deep water and decreasing age of Adriatic Sea deep water since the end of the 1980s. In the western Mediterranean deep basin we see the massive input of recently ventilated waters during the WMT. This signal is not yet apparent in the Tyrrhenian Sea, where the ventilation seems to be fairly constant since the EMT. Also the western Alboran Sea does not show any temporal trends in ventilation.


2011 ◽  
Vol 70 (2) ◽  
pp. 209-214 ◽  
Author(s):  
Fernando Gómez

Diversity and Distribution of the DinoflagellatesBrachidinium, AsterodiniumandMicroceratium(Brachidiniales, Dinophyceae) in the open Mediterranean SeaBrachidiniacean dinoflagellates have been investigated in the open waters of the Mediterranean Sea, along a transect from the south of France to the south of Cyprus (20 June-18 July 2008).BrachidiniumandKarenia papilionaceaoften co-occurred,B. capitatumpredominating in the surface waters. The highest abundance ofBrachidiniumwere found in the upper 25min the western Mediterranean with amaximum (24 cells L-1) at a depth of 5 m in the Balearic Sea.Asterodinium(up to 4 cells L-1) was recorded below of deep chlorophyll maxima. The genusMicroceratium, only known from the tropical Indo-Pacific region, is reported for the first time in the Mediterranean Sea.Microceratiumwas found below 100min the eastern Mediterranean Sea, with the highest abundance of 8 cells L-1at 125 m depth, in the Levantine Basin. This study also illustrates for the first time specimens under the division ofBrachidiniumandMicroceratium. This first occurrence ofMicroceratiumin the Mediterranean Sea should be considered an indicator of climate warming. However, it should not be considered a non-indigenous taxon.Microceratiumis the ‘tropical morphotype’, the adaptation of a local species (a life stage ofKarenia - Brachidinium - Asterodinium) to the tropical environmental conditions that prevail in summer in the open Mediterranean Sea.


2013 ◽  
Vol 10 (4) ◽  
pp. 1405-1445 ◽  
Author(s):  
A. Schneider ◽  
T. Tanhua ◽  
W. Roether ◽  
R. Steinfeldt

Abstract. The Mediterranean Sea has a fast overturning circulation and the deep water masses are well ventilated in comparison to the deep waters of the world ocean. Significant changes in the overturning circulation has been observed during the last few decades, the most prominent phenomena being the Eastern Mediterranean Transient (EMT) in the early 1990s and the Western Mediterranean Transit (WMT) near the mid of the decade following. During both of these events unusually large amounts of deep water were formed, and in the case of the EMT, the deep water formation area shifted from the Adriatic to the Aegean Sea. This variability is important to understand and to monitor, because ventilation is the main process to propagate surface perturbations, such as uptake of anthropogenic CO2, into the ocean interior. Here we synthesize a unique collection of transient tracer (CFC-12, SF6 and tritium) data from nine cruises conducted between 1987 and 2011 and use these data to determine temporal variability of Mediterranean ventilation. We also discuss biases and technical problems with transient tracer-based ages arising from their different input histories over time; particularly in the case of time-dependent ventilation. We observe a period of stagnation in the deep eastern (Levantine) basin after it was ventilated by the EMT so that the age of the deep water is increasing with time. In the Ionian Sea, on the other hand, we see evidence of increased ventilation after year 2001, indicating the restarted deep water formation in the Adriatic Sea. This is also reflected in the increasing age of the Cretan Sea deep water and decreasing age of Adriatic Sea deep water since the end of the 1980s. In the western Mediterranean deep basin we see the massive input of recently ventilated waters during the WMT. This signal is not yet apparent in the Tyrrhenian Sea, where the ventilation seems to be fairly constant since the EMT. Also the western Alboran Sea does not show any temporal trends in ventilation.


2019 ◽  
Author(s):  
Piero Lionello ◽  
Dario Conte ◽  
Marco Reale

Abstract. Large positive and negative sea level anomalies at the coast of the Mediterranean Sea are linked to intensity and position of cyclones moving along the Mediterranean storm track, with dynamics involving different factors. This analysis is based on a model hindcast and considers nine coastal stations, which are representative of sea level anomalies with different magnitude and characteristics. When a shallow water fetch is present, the wind around the cyclone center is the main cause of sea level positive and negative anomalies, depending on its onshore or offshore direction. The inverse barometer effect produces a positive anomaly at the coast near the cyclone pressure minimum and a negative anomaly at the opposite side of the Mediterranean Sea, because a cross-basin mean sea level pressure gradient is associated to the presence of a cyclone. Further, at some stations, negative sea level anomalies are reinforced by a residual water mass redistribution within the basin, which is associated with a transient response to the atmospheric pressure forcing. Though the link between presence of a cyclone in the Mediterranean has comparable importance for positive and negative anomalies, the relation between cyclone position and intensity is stronger for the magnitude of positive events. Area of cyclogenesis, track of the central minimum and position at the time of the event differ depending on the location where the sea level anomaly occurs and on its sign. The western Mediterranean is the main cyclogenesis area for both positive and negative anomalies, overall. Atlantic cyclones mainly produce positive sea level anomalies in the western basin. At the easternmost stations, positive anomalies are caused by Cyclogenesis in the Eastern Mediterranean. North Africa cyclogeneses are a major source of positive anomalies at the central African coast and negative anomalies at the eastern Mediterranean and North Aegean coast.


2008 ◽  
Vol 17 ◽  
pp. 87-91 ◽  
Author(s):  
A. V. Mehta ◽  
S. Yang

Abstract. Climatological features of mesoscale rain activities over the Mediterranean region between 5° W–40° E and 28° N–48° N are examined using the Tropical Rainfall Measuring Mission (TRMM) 3B42 and 2A25 rain products. The 3B42 rainrates at 3-hourly, 0.25°×0.25° spatial resolution for the last 10 years (January 1998 to July 2007) are used to form and analyze the 5-day mean and monthly mean climatology of rainfall. Results show considerable regional and seasonal differences of rainfall over the Mediterranean Region. The maximum rainfall (3–5 mm day−1) occurs over the mountain regions of Europe, while the minimum rainfall is observed over North Africa (~0.5 mm day−1). The main rainy season over the Mediterranean Sea extends from October to March, with maximum rainfall occurring during November–December. Over the Mediterranean Sea, an average rainrate of ~1–2 mm day−1 is observed, but during the rainy season there is 20% larger rainfall over the western Mediterranean Sea than that over the eastern Mediterranean Sea. During the rainy season, mesoscale rain systems generally propagate from west to east and from north to south over the Mediterranean region, likely to be associated with Mediterranean cyclonic disturbances resulting from interactions among large-scale circulation, orography, and land-sea temperature contrast.


2011 ◽  
Vol 8 (3) ◽  
pp. 827-840 ◽  
Author(s):  
M. Le Moal ◽  
H. Collin ◽  
I. C. Biegala

Abstract. The Mediterranean Sea is one of the most oligotrophic marine areas on earth where nitrogen fixation has formally believed to play an important role in carbon and nitrogen fluxes. Although this view is under debate, the diazotrophs responsible for this activity have still not been investigated in the open sea. In this study, we characterised the surface distribution and species richness of unicellular and filamentous diazotrophs across the Mediterranean Sea by combining microscopic counts with size fractionated in situ hybridization (TSA-FISH), and 16S rDNA and nifH genes phylogenies. These genetic analyses were possible owing to the development of a new PCR protocol adapted to scarce microorganisms that can detect as few as 1 cell ml−1 in cultures. Low concentrations of diazotrophic cyanobacteria were detected and this community was dominated at 99.9% by picoplankton hybridized to the Nitro821 probe, specific for unicellular diazotrophic cyanobacteria (UCYN). Among filamentous cyanobacteria only 0.02 filament ml−1 of Richelia were detected in the eastern basin, while small (0.7–1.5 μm) and large (2.5–3.2 μm) Nitro821-targeted cells were recovered at all stations with a mean concentration of 3.5 cell ml−1. The affiliation of the small Nitro821-targeted cells to UCYN-A was confirmed by 16S and nifH phylogenies in the western Mediterranean Sea. In the central and the eastern Mediterranean Sea no 16S rDNA and nifH sequence from UCYN was obtained as cells concentration were close to, or below PCR detection limit. Bradyrhizobium sequences dominated nifH clone libraries from picoplanktonic size fractions. A few sequences of γ-proteobacteria were also detected in the central Mediterranean Sea. While low phosphate and iron concentrations could explain the absence of Trichodesmium sp., the factors that prevent the development of UCYN-B and C remain unknown. We also propose that the dominating picoplankters probably developed specific strategies, such as associations with protists or particles, and/or photosynthetic activity, to acquire carbon for sustaining diazotrophy.


2020 ◽  
Vol 8 ◽  
Author(s):  
Sabrina Lo Brutto ◽  
Davide Iaciofano

A survey has been carried out at four Israeli rocky sites to evaluate the diversity of the amphipod fauna on various hard substrates, still scarcely monitored, as potential pabulum for amphipod crustacean species. A survey of shallow rocky reefs along the Mediterranean coast of Israel recovered 28 species and integrated the Amphipoda checklist for the country ofIsrael with 12 newly-recorded species. Such renewed national list includes Maera schieckei Karaman & Ruffo, 1971, a rare species endemic to the Mediterranean Sea, recorded here for the first time from the southern Levant Basin. The species, described from specimens collected in the Tyrrhenian Sea in 1970, has been only recorded eight times within the whole Mediterranean Sea. A revision of the bibliography on the distribution and ecology of M. schieckei showed that, although mentioned only for the western Mediterranean basin by some authors, it is listed in the checklist of amphipods of the Aegean Sea and neighbouring seas and has been found in the eastern Mediterranean basin since 1978. Maera schieckei was rarely found in the Mediterranean, one of the most studied marine biogeographic region as concerns the amphipod fauna; and the species seems to prefer bays or gulf areas. The role of updating and monitoring faunal composition should be re-evaluated.


2010 ◽  
Vol 11 (2) ◽  
pp. 381 ◽  
Author(s):  
A. ZENETOS ◽  
S. GOFAS ◽  
M. VERLAQUE ◽  
M.E. CINAR ◽  
J.E. GARCIA RASO ◽  
...  

The state-of-art on alien species in the Mediterranean Sea is presented, making distinctions among the four subregions defined in the EU Marine Strategy Framework Directive: (i) the Western Mediterranean Sea (WMED); (ii) the Central Mediterranean Sea (CMED); (iii) the Adriatic Sea (ADRIA); and (iv) the Eastern Mediterranean Sea (EMED). The updated checklist (December 2010) of marine alien species within each subregion, along with their acclimatization status and origin, is provided. A total of 955 alien species is known in the Mediterranean, the vast majority of them having being introduced in the EMED (718), less in the WMED (328) and CMED (267) and least in the Adriatic (171). Of these, 535 species (56%) are established in at least one area.Despite the collective effort of experts who attempted in this work, the number of introduced species remains probably underestimated. Excluding microalgae, for which knowledge is still insufficient, aliens have increased the total species richness of the Mediterranean Sea by 5.9%. This figure should not be directly read as an indication of higher biodiversity, as spreading of so many aliens within the basin is possibly causing biotic homogenization. Thermophilic species, i.e. Indo-Pacific, Indian Ocean, Red Sea, Tropical Atlantic, Tropical Pacific, and circum(sub)tropical, account for 88.4% of the introduced species in the EMED, 72.8% in the CMED, 59.3% in the WMED and 56.1% in the Adriatic. Cold water species, i.e. circumboreal, N Atlantic, and N Pacific, make up a small percentage of the introduced species, ranging between 4.2% and 21.6% and being more numerous in the Adriatic and less so in the EMED.Species that are classified as invasive or potentially invasive are 134 in the whole of the Mediterranean: 108 are present in the EMED, 76 in the CMED, 53 in the Adriatic and 64 in the WMED. The WMED hosts most invasive macrophytes, whereas the EMED has the lion’s share in polychaetes, crustaceans, molluscs and fish.


2016 ◽  
Vol 17 (2) ◽  
pp. 608 ◽  
Author(s):  
T. DAILIANIS ◽  
O. AKYOL ◽  
N. BABALI ◽  
M. BARICHE ◽  
F. CROCETTA ◽  
...  

This contribution forms part of a series of collective articles published regularly in Mediterranean Marine Science that report on new biodiversity records from the Mediterranean basin. The current article presents 51 geographically distinct records for 21 taxa belonging to 6 Phyla, extending from the western Mediterranean to the Levantine. The new records, per country, are as follows: Spain: the cryptogenic calcareous sponge Paraleucilla magna is reported from a new location in the Alicante region. Algeria: the rare Atlanto-Mediterranean bivalve Cardium indicum is reported from Annaba. Tunisia: new distribution records for the Indo-Pacific lionfish Pterois miles from Zembra Island and Cape Bon. Italy: the ark clam Anadara transversa is reported from mussel cultures in the Gulf of Naples, while the amphipod Caprella scaura and the isopods Paracerceis sculpta and Paranthura japonica are reported as associated to the –also allochthonous–bryozoan Amathia verticillata in the Adriatic Sea; in the latter region, the cosmopolitan Atlantic tripletail Lobotes surinamensisis also reported, a rare finding for the Mediterranean. Slovenia: a new record of the non-indigenous nudibranch Polycera hedgpethi in the Adriatic. Greece: several new reports of the introduced scleractinian Oculina patagonica, the fangtooth moray Enchelycore anatina, the blunthead puffer Sphoeroides pachygaster (all Atlantic), and the lionfish Pterois miles (Indo-Pacific) suggest their ongoing establishment in the Aegean Sea; the deepest bathymetric record of the invasive alga Caulerpa cylindracea in the Mediterranean Sea is also registered in the Kyklades, at depths exceeding 70 m. Turkey: new distribution records for two non indigenous crustaceans, the blue crab Callinectes sapidus (Atlantic origin) and the moon crab Matuta victor (Indo-Pacific origin) from the Bay of Izmir and Antalya, respectively; in the latter region, the Red Sea goatfish Parupeneus forsskali, is also reported. Lebanon: an array of records of 5 alien and one native Mediterranean species is reported by citizen-scientists; the Pacific jellyfish Phyllorhiza punctata and the Indo-Pacific teleosteans Tylerius spinosissimus, Ostracion cubicus, and Lutjanus argentimaculatus are reported from the Lebanese coast, the latter notably being the second record for the species in the Mediterranean Sea since 1977; the native sand snake-eel Ophisurus serpens, rare in the eastern Mediterranean, is reported for the first time from Lebanon, this being its easternmost distribution range; finally, a substantial number of sightings of the lionfish Pterois miles further confirm the current establishment of this lessepsian species in the Levantine.


Sign in / Sign up

Export Citation Format

Share Document