scholarly journals The circulation of Icelandic waters – a modelling study

2013 ◽  
Vol 10 (2) ◽  
pp. 763-824 ◽  
Author(s):  
K. Logemann ◽  
J. Ólafsson ◽  
Á. Snorrason ◽  
H. Valdimarsson ◽  
G. Marteinsdóttir

Abstract. The three-dimensional flow, temperature and salinity fields of the North Atlantic including the Arctic Ocean covering the time period 1992 to 2006 are simulated with the numerical ocean model CODE. The model reveals several new insights and previously unknown structures which help us to clarify open questions on the regional oceanography of Icelandic waters. These relate to the structure and geographical distribution of the coastal current, the primary forcing of the North Icelandic Irminger Current (NIIC), the path of the Atlantic Water south-east of Iceland and the structure of the North Icelandic Jet (NIJ). The model's adaptively refined computational mesh has a maximum resolution of 1 km horizontal and 2.5 m vertical in Icelandic waters. CTD profiles from this region and the river discharge of 46 Icelandic watersheds, computed by the hydrological model WaSiM, are assimilated into the simulation. The model realistically reproduces the established elements of the circulation around Iceland. However, analysis of the simulated mean flow field also provides further insights. It suggests a distinct freshwater-induced coastal current that only exists along the south-west and west coasts which is accompanied by a counter-directed undercurrent. The simulated transport of Atlantic Water over the Icelandic shelf takes place in a symmetrical system of two currents, with the established NIIC over the north-western and northern shelf, and a current over the southern and south-eastern shelf herein called the South Icelandic Current (SIC). Both currents are driven by topographically induced distortions of the Arctic Front's barotropic pressure field. The SIC is simulated to be an upstream precursor of the Faroe Current (FC). The recently discovered North Icelandic Jet (NIJ) also features in the model predictions and is found to be forced by the baroclinic pressure field of the Arctic Front, to originate east of the Kolbeinsey Ridge and to have a volume transport of around 1.5 Sv within northern Denmark Strait. The simulated multi-annual mean Atlantic Water transport of the NIIC increased by 85% during 1992 to 2006, whereas the corresponding NIJ transport decreased by 27%. Based on our model results we propose a new and further differentiated circulation scheme of Icelandic waters whose details may inspire future observational oceanography studies.

Ocean Science ◽  
2013 ◽  
Vol 9 (5) ◽  
pp. 931-955 ◽  
Author(s):  
K. Logemann ◽  
J. Ólafsson ◽  
Á. Snorrason ◽  
H. Valdimarsson ◽  
G. Marteinsdóttir

Abstract. The three-dimensional flow, temperature and salinity fields of the North Atlantic, including the Arctic Ocean, covering the time period 1992 to 2006 are simulated with the numerical ocean model CODE. The simulation reveals several new insights and previously unknown structures which help us to clarify open questions on the regional oceanography of Icelandic waters. These relate to the structure and geographical distribution of the coastal current, the primary forcing of the North Icelandic Irminger Current (NIIC) and the path of the Atlantic Water south-east of Iceland. The model's adaptively refined computational mesh has a maximum resolution of 1 km horizontal and 2.5 m vertical in Icelandic waters. CTD profiles from this region and the river discharge of 46 Icelandic watersheds, computed by the hydrological model WaSiM, are assimilated into the simulation. The model realistically reproduces the established elements of the circulation around Iceland. However, analysis of the simulated mean flow field also provides further insights. It suggests a distinct freshwater-induced coastal current that only exists along the south-west and west coasts, which is accompanied by a counter-directed undercurrent. The simulated transport of Atlantic Water over the Icelandic shelf takes place in a symmetrical system of two currents, with the established NIIC over the north-western and northern shelf, and a hitherto unnamed current over the southern and south-eastern shelf, which is simulated to be an upstream precursor of the Faroe Current (FC). Both currents are driven by barotropic pressure gradients induced by a sea level slope across the Greenland–Scotland Ridge. The recently discovered North Icelandic Jet (NIJ) also features in the model predictions and is found to be forced by the baroclinic pressure field of the Arctic Front, to originate east of the Kolbeinsey Ridge and to have a volume transport of around 1.5 Sv within northern Denmark Strait. The simulated multi-annual mean Atlantic Water transport of the NIIC increased by 85% during 1992 to 2006, whereas the corresponding NIJ transport decreased by 27%. Based on our model results we propose a new and further differentiated circulation scheme of Icelandic waters whose details may inspire future observational oceanography studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rebecca Jackson ◽  
Anna Bang Kvorning ◽  
Audrey Limoges ◽  
Eleanor Georgiadis ◽  
Steffen M. Olsen ◽  
...  

AbstractBaffin Bay hosts the largest and most productive of the Arctic polynyas: the North Water (NOW). Despite its significance and active role in water mass formation, the history of the NOW beyond the observational era remains poorly known. We reconcile the previously unassessed relationship between long-term NOW dynamics and ocean conditions by applying a multiproxy approach to two marine sediment cores from the region that, together, span the Holocene. Declining influence of Atlantic Water in the NOW is coeval with regional records that indicate the inception of a strong and recurrent polynya from ~ 4400 yrs BP, in line with Neoglacial cooling. During warmer Holocene intervals such as the Roman Warm Period, a weaker NOW is evident, and its reduced capacity to influence bottom ocean conditions facilitated northward penetration of Atlantic Water. Future warming in the Arctic may have negative consequences for this vital biological oasis, with the potential knock-on effect of warm water penetration further north and intensified melt of the marine-terminating glaciers that flank the coast of northwest Greenland.


2021 ◽  
Vol 9 (5) ◽  
pp. 458
Author(s):  
Dongdong Chu ◽  
Haibo Niu ◽  
Wenli Qiao ◽  
Xiaohui Jiao ◽  
Xilin Zhang ◽  
...  

In this paper, a three-dimensional storm surge model was developed based on the Finite Volume Community Ocean Model (FVCOM) by the hindcasts of four typhoon-induced storm surges (Chan-hom, Mireille, Herb, and Winnie). After model validation, a series of sensitivity experiments were conducted to explore the effects of key parameters in the wind and pressure field (forward speed, radius of maximum wind (RMW), inflow angle, and central pressure), typhoon path, wind intensity, and topography on the storm surge and surge asymmetry between sea level rise (positive surge) and fall (negative surge) along the southeastern coast of China (SCC). The model results show that lower central pressure and larger RMW could lead to stronger surge asymmetry. A larger inflow angle results in a stronger surge asymmetry. In addition, the path of Chan-hom is the most dangerous path type for the Zhoushan Archipelago area, and that of Winnie follows next. The model results also indicate that the non-linear interaction between wind field and pressure field tends to weaken the peak surge elevation. The effect of topography on storm surges indicates that the peak surge elevation and its occurrence time, as well as the surge asymmetry, increase with a decreasing slope along the SCC.


1998 ◽  
Vol 120 (2) ◽  
pp. 77-84 ◽  
Author(s):  
I. V. Polyakov ◽  
I. Yu. Kulakov ◽  
S. A. Kolesov ◽  
N. Eu. Dmitriev ◽  
R. S. Pritchard ◽  
...  

A fully prognostic coupled ice-ocean model is described. The ice model is based on the elastic-plastic constitutive law with ice mass and compactness described by distribution functions. The ice thermodynamics model is applied individually to each ice thickness category. Advection of the ice partial mass and concentrations is parameterized by a fourth-order algorithm that conserves monotonicity of the solution. The ocean is described as a three-dimensional time-dependent baroclinic model with free surface. The coupled model is applied to establish the Arctic Ocean seasonal climatology using fully prognostic models for ice and ocean. Results reflect the importance of the ice melting/freezing in the formation of the thermohaline structure of the upper ocean layer.


The Arctic Mediterranean Seas constitute an oceanic region in which the thermohaline circulation has a strong advective component and deep ventilation processes are very active relative to other oceanic areas. Details of the nature of these circulation and ventilation processes have been revealed through use of Cs and Sr isotopes from bomb-fallout and nuclear-waste sources as ocean tracers. In both cases, their regional input is dominated by advective supply in the Norwegian Atlantic Current and Norwegian Coastal Current, respectively. The different temporal, spatial, and compositional input patterns of these tracers have been used to study different facets of the regional circulation. These input differences and some representative applications of the use of these tracers are reviewed. The data discussed derive from samples collected both from research vessels and from Arctic ice camps. The topics addressed include: ( a ) the role of Arctic Intermediate Water as source, supplying recent surface water to North Atlantic Deep Water via the Denmark Strait overflow; ( b ) deep convective mixing in the Greenland Sea; ( c ) circulation or recirculation of Atlantic water in the Arctic basins; and ( d ) the role of Arctic shelfwaters in the ventilation of intermediate and deep water in the Eurasian and Canadian basins.


2016 ◽  
Author(s):  
Jiliang Xuan ◽  
Daji Huang ◽  
Thomas Pohlmann ◽  
Jian Su ◽  
Bernhard Mayer ◽  
...  

Abstract. The seasonal mean and synoptic fluctuation of the wintertime Taiwan Warm Current (TWC) were investigated using a well validated finite volume community ocean model. The spatial distribution and dynamics of the synoptic fluctuation were highlighted. The seasonal mean of the wintertime TWC has two branches: an inshore branch between the 30 and 100 m isobaths and an offshore branch between the 100 and 200 m isobaths. The Coriolis term is much larger than the inertia term and is almost balanced by the pressure gradient term in both branches, indicating the geostrophic balance of the mean current. Two areas with significant fluctuations of the TWC were identified during wintertime. One of the areas is located to the north of Taiwan with velocities varying in the cross-shore direction. These significant cross-shore fluctuations are driven by barotropic pressure gradients associated with the intrusion of the Taiwan Strait Current (TSC). When a larger TSC intrudes north of Taiwan, the isobaric slope tilts downward from south to north, leading to a cross-shore current from the coastal area to the offshore area. When the TSC intrusion is weak, the cross-shore current to the north of Taiwan is directed from offshore to inshore. The other area of significant fluctuation is located in the inshore area, extending in the region between the 30 and 100 m isobaths. The fluctuations are generally strong in the alongshore direction, in particular at the latitudes 26.5° N and 28° N where they are important for the local cross-shore transports. Wind affects the synoptic fluctuation through episodic events. When the northeasterly monsoon prevails, the southward Zhe-Min Coastal Current dominates the inshore area associated with a deepening of the mixed layer. When the winter monsoon is weakened or the southerly wind prevails, the northward TWC dominates in the inshore area.


2021 ◽  
Author(s):  
Claudia Wekerle ◽  
Ralph Timmermann ◽  
Qiang Wang ◽  
Rebecca McPherson

<p>The 79° North Glacier (79NG) is the largest of the marine terminating glaciers fed by the  Northeast Greenland Ice Stream (NEGIS), which drains around 15% of the Greenland ice sheet. The 79NG is one of the few Greenland glaciers with a floating ice tongue, and is strongly influenced by warm Atlantic Water originating from Fram Strait and carried towards it through a trough system on the Northeast Greenland continental shelf.</p><p>Considering the decrease in thickness of the 79NG and also of the neighboring Zachariae Isstrøm (ZI), we aim to understand the processes that potentially lead to the decay of these glaciers. As a first step we present here an ocean-sea ice simulation which explicitly resolves the cavities of the 79NG and ZI glaciers, applying the Finite-Element Sea ice-Ocean Model (FESOM). We take advantage of the multi-resolution capability of FESOM and locally increase mesh resolution in the vicinity of the 79NG to 700 m. The Northeast Greenland continental shelf is resolved with 3 km, and the Arctic Ocean and Nordic Seas with 4.5 km. The simulation is conducted for the time period 1980 to 2018, using JRA-55 atmospheric reanalysis. Solid and liquid runoff from Greenland is taken from the Bamber et al. 2018 dataset. The flow of warm Atlantic water into the glacier and outflow of meltwater is compared to observational data from measurement campaigns. We further use current and hydrographic data from moorings deployed in Norske Trough to assess the model performance in carrying warm water towards the glacier. This simulation spanning several decades allows us to investigate recent changes in basal melt rates induced by oceanic processes, in particular warm Atlantic Water transport towards the glacier.</p>


Ocean Science ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 209-219
Author(s):  
Igor P. Medvedev ◽  
Evgueni A. Kulikov ◽  
Isaac V. Fine

Abstract. The Caspian Sea is the largest enclosed basin on Earth and a unique subject for the analysis of tidal dynamics. Tides in the basin are produced directly by the tide-generating forces. Using the Princeton Ocean Model (POM), we examine details of the spatial and temporal features of the tidal dynamics in the Caspian Sea. We present tidal charts of the amplitudes and phase lags of the major tidal constituents, together with maps of the form factor, tidal range, and tidal current speed. Semi-diurnal tides in the Caspian Sea are determined by a Taylor amphidromic system with anticlockwise rotation. The largest M2 amplitude is 6 cm and is located in Türkmen Aylagy (called Turkmen Bay hereafter). For the diurnal constituents, the Absheron Peninsula separates two individual amphidromes with anticlockwise rotation in the north and in the south. The maximum K1 amplitudes (up to 0.7–0.8 cm) are located in (1) the south-eastern part of the basin, (2) Türkmenbaşy Gulf, (3) Mangyshlak Bay; and (4) Kizlyar Bay. As a result, the semi-diurnal tides prevail over diurnal tides in the Caspian Sea. The maximum tidal range, of up to 21 cm, has been found in Turkmen Bay. The strongest tidal currents have been located in the straits to the north and south of Ogurja Ada, where speeds reach 22 and 19 cm s−1, respectively. Numerical simulations of the tides using different mean sea levels (within a range of 5 m) indicate that spatial features of the Caspian Sea tides are strongly sensitive to changes in mean sea level.


Polar Record ◽  
2012 ◽  
Vol 48 (3) ◽  
pp. 222-229 ◽  
Author(s):  
Suzanne Robinson

ABSTRACTDuring the last decades the Arctic has become more central on the world stage. However, despite increased interest how much do people really know about ‘the north’ and the ‘northern people’? The aim of this article is to chronicle a research project by students, who saw themselves as northerners, that used video to capture northerners’ definitions of the north, as well as asking the community about what they wanted newcomers and southern Canada to know about the north. The group also embarked on a new discipline of northerners studying ‘the south’. 43 students interviewed 95 people in the Beaufort Delta, Northwest Territories and 25 people in Edmonton, Alberta. The student researchers’ responses and that of their interviewees are some of the most direct messages on how northerners view their identity and that of their fellow southern Canadians. This project created a video tool to share, educate, and commence a dialogue between people about the north straight from the source.


Sign in / Sign up

Export Citation Format

Share Document