scholarly journals Transient tracer applications in the Southern Ocean

2014 ◽  
Vol 11 (5) ◽  
pp. 2289-2335
Author(s):  
T. Stöven ◽  
T. Tanhua ◽  
M. Hoppema

Abstract. Transient tracers can be used to constrain the Inverse-Gaussian transit time distribution (IG-TTD) and thus provide information about ocean ventilation. Individual transient tracers have different time and application ranges which are defined by their atmospheric history (chronological transient tracers) or their decay rate (radioactive transient tracers). The classification ranges from tracers for highly ventilated water masses, e.g. sulfur hexafluoride (SF6), the decay of Tritium (δ3H) and to some extent also dichlorodifluoromethane (CFC-12) to tracers for less ventilated deep ocean basins, e.g. CFC-12, Argon-39 (39Ar) and radiocarbon (14C). The IG-TTD can be empirically constrained by using transient tracer couples with sufficiently different input functions. Each tracer couple has specific characteristics which influence the application limit of the IG-TTD. Here we provide an overview of commonly used transient tracer couples and their validity areas within the IG-TTD by using the concept of tracer age differences (TAD). New measured CFC-12 and SF6 data from a section along 10° E in the Southern Ocean in 2012 are presented. These are combined with a similar data set of 1998 along 6° E in the Southern Ocean as well as with 39Ar data from the early 1980s in the western Atlantic Ocean and the Weddell Sea for investigating the application limit of the IG-TTD and to analyze changes in ventilation in the Southern Ocean. We found that the IG-TTD can be constrained south to 46° S which corresponds to the Subantarctic Front (SAF) denoting the application limit. The constrained IG-TTD north of the SAF shows a slight increase in mean ages between 1998 and 2012 in the upper 1200 m between 42–46° S. The absence of SF6 inhibits ventilation analyses below this depth. The time lag analysis between the 1998 and 2012 data shows an increase in ventilation down to 1000 m and a steady ventilation between 2000 m-bottom south of the SAF between 51–55° S.

Ocean Science ◽  
2015 ◽  
Vol 11 (5) ◽  
pp. 699-718 ◽  
Author(s):  
T. Stöven ◽  
T. Tanhua ◽  
M. Hoppema ◽  
J. L. Bullister

Abstract. Currently available transient tracers have different application ranges that are defined by their temporal input (chronological transient tracers) or their decay rate (radioactive transient tracers). Transient tracers range from tracers for highly ventilated water masses such as sulfur hexafluoride (SF6) through tritium (3H) and chlorofluorocarbons (CFCs) up to tracers for less ventilated deep ocean basins such as argon-39 (39Ar) and radiocarbon (14C). In this context, highly ventilated water masses are defined as water masses that have been in contact with the atmosphere during the last decade. Transient tracers can be used to empirically constrain the transit time distribution (TTD), which can often be approximated with an inverse Gaussian (IG) distribution. The IG-TTD provides information about ventilation and the advective/diffusive characteristics of a water parcel. Here we provide an overview of commonly used transient tracer couples and the corresponding application range of the IG-TTD by using the new concept of validity areas. CFC-12, CFC-11 and SF6 data from three different cruises in the South Atlantic Ocean and Southern Ocean as well as 39Ar data from the 1980s and early 1990s in the eastern Atlantic Ocean and the Weddell Sea are used to demonstrate this method. We found that the IG-TTD can be constrained along the Greenwich Meridian south to 46° S, which corresponds to the Subantarctic Front (SAF) denoting the application limit. The Antarctic Intermediate Water (AAIW) describes the limiting water layer in the vertical. Conspicuous high or lower ratios between the advective and diffusive components describe the transition between the validity area and the application limit of the IG-TTD model rather than describing the physical properties of the water parcel. The combination of 39Ar and CFC data places constraints on the IG-TTD in the deep water north of the SAF, but not beyond this limit.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Hayatte Akhoudas ◽  
Jean-Baptiste Sallée ◽  
F. Alexander Haumann ◽  
Michael P. Meredith ◽  
Alberto Naveira Garabato ◽  
...  

AbstractThe Atlantic sector of the Southern Ocean is the world’s main production site of Antarctic Bottom Water, a water-mass that is ventilated at the ocean surface before sinking and entraining older water-masses—ultimately replenishing the abyssal global ocean. In recent decades, numerous attempts at estimating the rates of ventilation and overturning of Antarctic Bottom Water in this region have led to a strikingly broad range of results, with water transport-based calculations (8.4–9.7 Sv) yielding larger rates than tracer-based estimates (3.7–4.9 Sv). Here, we reconcile these conflicting views by integrating transport- and tracer-based estimates within a common analytical framework, in which bottom water formation processes are explicitly quantified. We show that the layer of Antarctic Bottom Water denser than 28.36 kg m$$^{-3}$$ - 3 $$\gamma _{n}$$ γ n is exported northward at a rate of 8.4 ± 0.7 Sv, composed of 4.5 ± 0.3 Sv of well-ventilated Dense Shelf Water, and 3.9 ± 0.5 Sv of old Circumpolar Deep Water entrained into cascading plumes. The majority, but not all, of the Dense Shelf Water (3.4 ± 0.6 Sv) is generated on the continental shelves of the Weddell Sea. Only 55% of AABW exported from the region is well ventilated and thus draws down heat and carbon into the deep ocean. Our findings unify traditionally contrasting views of Antarctic Bottom Water production in the Atlantic sector, and define a baseline, process-discerning target for its realistic representation in climate models.


2011 ◽  
Vol 8 (9) ◽  
pp. 2461-2479 ◽  
Author(s):  
G. Sarthou ◽  
E. Bucciarelli ◽  
F. Chever ◽  
S. P. Hansard ◽  
M. González-Dávila ◽  
...  

Abstract. Labile Fe(II) distributions were investigated in the Sub-Tropical South Atlantic and the Southern Ocean during the BONUS-GoodHope cruise from 34 to 57° S (February–March 2008). Concentrations ranged from below the detection limit (0.009 nM) to values as high as 0.125 nM. In the surface mixed layer, labile Fe(II) concentrations were always higher than the detection limit, with values higher than 0.060 nM south of 47° S, representing between 39 % and 63 % of dissolved Fe (DFe). Apparent biological production of Fe(II) was evidenced. At intermediate depth, local maxima were observed, with the highest values in the Sub-Tropical domain at around 200 m, and represented more than 70 % of DFe. Remineralization processes were likely responsible for those sub-surface maxima. Below 1500 m, concentrations were close to or below the detection limit, except at two stations (at the vicinity of the Agulhas ridge and in the north of the Weddell Sea Gyre) where values remained as high as ~0.030–0.050 nM. Hydrothermal or sediment inputs may provide Fe(II) to these deep waters. Fe(II) half life times (t1/2) at 4°C were measured in the upper and deep waters and ranged from 2.9 to 11.3 min, and from 10.0 to 72.3 min, respectively. Measured values compared quite well in the upper waters with theoretical values from two published models, but not in the deep waters. This may be due to the lack of knowledge for some parameters in the models and/or to organic complexation of Fe(II) that impact its oxidation rates. This study helped to considerably increase the Fe(II) data set in the Ocean and to better understand the Fe redox cycle.


2014 ◽  
Vol 11 (12) ◽  
pp. 17043-17087 ◽  
Author(s):  
M. Rembauville ◽  
I. Salter ◽  
N. Leblond ◽  
A. Gueneugues ◽  
S. Blain

Abstract. A sediment trap moored in the naturally iron-fertilized Kerguelen plateau in the Southern Ocean provided an annual record of particulate organic carbon and nitrogen fluxes at 289 m. At the trap deployment depth current speeds were low (∼10 cm s−1) and primarily tidal-driven (M2 tidal component) providing favorable hydrodynamic conditions for the collection of flux. Particulate organic carbon (POC) flux was generally low (<0.5 mmol m−2 d−1) although two episodic export events (<14 days) of 1.5 mmol m−2 d−1 were recorded. These increases in flux occurred with a 1 month time lag from peaks in surface chlorophyll and together accounted for approximately 40% of the annual flux budget. The annual POC flux of 98.2 ± 4.4 mmol m−2 yr−1 was relatively low considering the shallow deployment depth, but similar to deep-ocean (>2 km) fluxes measured from similarly productive iron-fertilized blooms. Comparison of the sediment trap data with complementary estimates of biomass accumulation and export indicate that ∼90% of the flux was lost between 200 and 300 m. We hypothesize that grazing pressure, including mesozooplankton and mesopelagic fishes, may be responsible for rapid flux attenuation and the High Biomass Low Export regime characterizing the Kerguelen bloom. The importance of plankton community structure in controlling the temporal variability of export fluxes is addressed in a companion paper.


2014 ◽  
Vol 11 (7) ◽  
pp. 1981-2001 ◽  
Author(s):  
I. Borrione ◽  
O. Aumont ◽  
M. C. Nielsdóttir ◽  
R. Schlitzer

Abstract. In high-nutrient low-chlorophyll waters of the western Atlantic sector of the Southern Ocean, an intense phytoplankton bloom is observed annually north of South Georgia. Multiple sources, including shallow sediments and atmospheric dust deposition, are thought to introduce iron to the region. However, the relative importance of each source is still unclear, owing in part to the scarcity of dissolved iron (dFe) measurements in the South Georgia region. In this study, we combine results from a recently published dFe data set around South Georgia with a coupled regional hydrodynamic and biogeochemical model to further investigate iron supply around the island. The biogeochemical component of the model includes an iron cycle, where sediments and dust deposition are the sources of iron to the ocean. The model captures the characteristic flow patterns around South Georgia, hence simulating a large phytoplankton bloom to the north (i.e. downstream) of the island. Modelled dFe concentrations agree well with observations (mean difference and root mean square errors of ~0.02 nM and ~0.81 nM) and form a large plume to the north of the island that extends eastwards for more than 800 km. In agreement with observations, highest dFe concentrations are located along the coast and decrease with distance from the island. Sensitivity tests indicate that most of the iron measured in the main bloom area originates from the coast and very shallow shelf-sediments (depths < 20 m). Dust deposition exerts almost no effect on surface chlorophyll a concentrations. Other sources of iron such as run-off and glacial melt are not represented explicitly in the model, however we discuss their role in the local iron budget.


2018 ◽  
Vol 31 (3) ◽  
pp. 1053-1073 ◽  
Author(s):  
Woo Geun Cheon ◽  
Chang-Bong Cho ◽  
Arnold L. Gordon ◽  
Young Ho Kim ◽  
Young-Gyu Park

Abstract An oscillation in intensity of the Southern Hemisphere westerly winds is a major characteristic of the southern annular mode. Its impact upon the sea ice–ocean interactions in the Weddell and Ross Seas is investigated by a sea ice–ocean general circulation model coupled to an energy balance model for three temporal scales and two amplitudes of intensity. It is found that the oscillating wind forcing over the Southern Ocean plays a significant role both in regulating coastal polynyas along the Antarctic margins and in triggering open-ocean polynyas. The formation of coastal polynya in the western Weddell and Ross Seas is enhanced with the intensifying winds, resulting in an increase in the salt flux into the ocean via sea ice formation. Under intensifying winds, an instantaneous spinup within the Weddell and Ross Sea cyclonic gyres causes the warm deep water to upwell, triggering open-ocean polynyas with accompanying deep ocean convection. In contrast to coastal polynyas, open-ocean polynyas in the Weddell and Ross Seas respond differently to the wind forcing and are dependent on its period. That is, the Weddell Sea open-ocean polynya occurs earlier and more frequently than the Ross Sea open-ocean polynya and, more importantly, does not occur when the period of oscillation is sufficiently short. The strong stratification of the Ross Sea and the contraction of the Ross gyre due to the southward shift of Antarctic Circumpolar Current fronts provide unfavorable conditions for the Ross Sea open-ocean polynya. The recovery time of deep ocean heat controls the occurrence frequency of the Weddell Sea open-ocean polynya.


2015 ◽  
Vol 45 (11) ◽  
pp. 2755-2772 ◽  
Author(s):  
Hannah Zanowski ◽  
Robert Hallberg ◽  
Jorge L. Sarmiento

AbstractThe role of Weddell Sea polynyas in establishing deep-ocean properties is explored in the NOAA Geophysical Fluid Dynamics Laboratory’s (GFDL) coupled climate model CM2G. Using statistical composite analysis of over 30 polynya events that occur in a 2000-yr-long preindustrial control run, the temperature, salinity, and water mass changes associated with the composite event are quantified. For the time period following the composite polynya cessation, termed the “recovery,” warming between 0.002° and 0.019°C decade−1 occurs below 4200 m in the Southern Ocean basins. Temperature and salinity changes are strongest in the Southern Ocean and the South Atlantic near the polynya formation region. Comparison of the model results with abyssal temperature observations reveals that the 1970s Weddell Polynya recovery could account for 10% ± 8% of the recent warming in the abyssal Southern Ocean. For individual Southern Ocean basins, this percentage is as little as 6% ± 11% or as much as 34% ± 13%.


2015 ◽  
Vol 12 (11) ◽  
pp. 3153-3170 ◽  
Author(s):  
M. Rembauville ◽  
I. Salter ◽  
N. Leblond ◽  
A. Gueneugues ◽  
S. Blain

Abstract. A sediment trap moored in the naturally iron-fertilized Kerguelen Plateau in the Southern Ocean provided an annual record of particulate organic carbon and nitrogen fluxes at 289 m. At the trap deployment depth, current speeds were typically low (~ 10 cm s−1) and primarily tidal-driven (M2 tidal component). Although advection was weak, the sediment trap may have been subject to hydrodynamical and biological (swimmer feeding on trap funnel) biases. Particulate organic carbon (POC) flux was generally low (< 0.5 mmol m−2 d−1), although two episodic export events (< 14 days) of 1.5 mmol m−2 d−1 were recorded. These increases in flux occurred with a 1-month time lag from peaks in surface chlorophyll and together accounted for approximately 40% of the annual flux budget. The annual POC flux of 98.2 ± 4.4 mmol m−2 yr−1 was low considering the shallow deployment depth but comparable to independent estimates made at similar depths (~ 300 m) over the plateau, and to deep-ocean (> 2 km) fluxes measured from similarly productive iron-fertilized blooms. Although undertrapping cannot be excluded in shallow moored sediment trap deployment, we hypothesize that grazing pressure, including mesozooplankton and mesopelagic fishes, may be responsible for the low POC flux beneath the base of the winter mixed layer. The importance of plankton community structure in controlling the temporal variability of export fluxes is addressed in a companion paper.


2011 ◽  
Vol 8 (2) ◽  
pp. 4163-4208 ◽  
Author(s):  
G. Sarthou ◽  
E. Bucciarelli ◽  
F. Chever ◽  
S. P. Hansard ◽  
M. Gonzalez-Davila ◽  
...  

Abstract. Labile Fe(II) distributions were investigated in the Sub-Tropical South Atlantic and the Southern Ocean during the BONUS-GoodHope cruise from 34 to 57° S (February–March 2008). Concentrations ranged from below the detection limit (0.009 nM) to values as high as 0.125 nM. In the surface mixed layer, labile Fe(II) concentrations were always higher than the detection limit, with values higher than 0.060 nM south of 47° S, representing between 39% and 63% of dissolved Fe (DFe). Biological production was evidenced. At intermediate depth, local maxima were observed, with the highest values in the Sub-Tropical domain at around 200 m, and represented more than 70% of DFe. Remineralization processes were likely responsible for those sub-surface maxima. Below 1500 m, concentrations were close to or below the detection limit, except at two stations (at the vicinity of the Agulhas ridge and in the north of the Weddell Sea Gyre) where values remained as high as ~0.030–0.050 nM. Hydrothermal or sediment inputs may provide Fe(II) to these deep waters. Fe(II) half life times (t1/2) at 4 °C were measured in the upper and deep waters and ranged from 2.9 to 11.3 min, and from 10.0 to 72.3 min, respectively. Measured values compared quite well in the upper waters with theoretical values from two published models, but not in the deep waters. This may be due to the lack of knowledge for some parameters in the models and/or to organic complexation of Fe(II) that impact its oxidation rates. This study helped to considerably increase the Fe(II) data set in the Ocean and to better understand the Fe redox cycle.


1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


Sign in / Sign up

Export Citation Format

Share Document