scholarly journals The Bortoluzzi Mud Volcano (Ionian Sea, Italy) and its potential for tracking the seismic cycle of active faults

Solid Earth ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 741-763 ◽  
Author(s):  
Marco Cuffaro ◽  
Andrea Billi ◽  
Sabina Bigi ◽  
Alessandro Bosman ◽  
Cinzia G. Caruso ◽  
...  

Abstract. The Ionian Sea in southern Italy is at the center of active interaction and convergence between the Eurasian and African–Adriatic plates in the Mediterranean. This area is seismically active with instrumentally and/or historically recorded Mw>7.0 earthquakes, and it is affected by recently discovered long strike-slip faults across the active Calabrian accretionary wedge. Many mud volcanoes occur on top of the wedge. A recently discovered one (called the Bortoluzzi Mud Volcano or BMV) was surveyed during the Seismofaults 2017 cruise (May 2017). High-resolution bathymetric backscatter surveys, seismic reflection profiles, geochemical and earthquake data, and a gravity core are used here to geologically, geochemically, and geophysically characterize this structure. The BMV is a circular feature ≃22 m high and ≃1100 m in diameter with steep slopes (up to a dip of 22∘). It sits atop the Calabrian accretionary wedge and a system of flower-like oblique-slip faults that are probably seismically active as demonstrated by earthquake hypocentral and focal data. Geochemistry of water samples from the seawater column on top of the BMV shows a significant contamination of the bottom waters from saline (evaporite-type) CH4-dominated crustal-derived fluids similar to the fluids collected from a mud volcano located on the Calabria mainland over the same accretionary wedge. These results attest to the occurrence of open crustal pathways for fluids through the BMV down to at least the Messinian evaporites at about −3000 m. This evidence is also substantiated by helium isotope ratios and by comparison and contrast with different geochemical data from three seawater columns located over other active faults in the Ionian Sea area. One conclusion is that the BMV may be useful for tracking the seismic cycle of active faults through geochemical monitoring. Due to the widespread diffusion of mud volcanoes in seismically active settings, this study contributes to indicating a future path for the use of mud volcanoes in the monitoring and mitigation of natural hazards.

2018 ◽  
Author(s):  
Marco Cuffaro ◽  
Andrea Billi ◽  
Sabina Bigi ◽  
Alessandro Bosman ◽  
Cinzia G. Caruso ◽  
...  

Abstract. The Ionian Sea in southern Italy is at the center of active interaction and convergence between the Eurasian and African-Adriatic plates in the Mediterranean. This area is seismically active with instrumentally/historically-recorded Mw > 7.0 earthquakes and it is affected by recently-discovered long strike-slip faults across the active Calabrian accretionary wedge. Many mud volcanoes occur on top of the wedge. A recently-discovered one (here named Bortoluzzi Mud Volcano, BMV) was surveyed during the Seismofaults 2017 cruise (May 2017). Bathymetric-backscatter surveys, seismic reflection profiles, geochemical and earthquake data as well as a gravity core are here used to geologically, geochemically, and geophysically characterize this structure. The BMV is a circular feature ≃22 m high and ≃1100 m in diameter with steep slopes (up to a dip of 22°). It sits atop the Calabrian accretionary wedge and a system of flower-like oblique-slip faults that are probably seismically active as demonstrated by earthquake hypocentral and focal data. Geochemistry of water samples from the seawater column on top of the BMV shows a significant contamination of the bottom waters from saline (evaporite-type) CH4-dominated crustal-derived fluids similar to the fluids collected from a mud volcano located in the Calabria main land over the same accretionary wedge. These results attest for the occurrence of an open crustal conduit through the BMV down to at least the Messinian evaporites at about −3000 m. This evidence is also substantiated by Helium isotope ratios and by different geochemical data from three sea water columns located elsewhere in the Ionian Sea. Conclusions are drawn on the origin of the BMV and on the potential of this type of structures for tracking the seismic cycle of active faults. Due to the widespread diffusion of mud volcanoes in seismically active settings, this study may contribute to indicate a potential and feasible future path for the use of these ubiquitous structures in favor of the mitigation of natural hazards.


2018 ◽  
Author(s):  
Marco Cuffaro ◽  
Andrea Billi ◽  
Sabina Bigi ◽  
Alessandro Bosman ◽  
Cinzia G. Caruso ◽  
...  

2013 ◽  
Vol 336 ◽  
pp. 84-98 ◽  
Author(s):  
G. Panieri ◽  
A. Polonia ◽  
R.G. Lucchi ◽  
S. Zironi ◽  
L. Capotondi ◽  
...  

2012 ◽  
Vol 12 (7) ◽  
pp. 2311-2328 ◽  
Author(s):  
A. Polonia ◽  
L. Torelli ◽  
L. Gasperini ◽  
P. Mussoni

Abstract. The Calabrian Arc (CA) subduction complex is located at the toe of the Eurasian Plate in the Ionian Sea, where sediments resting on the lower plate have been scraped off and piled up in the accretionary wedge due to the African/Eurasian plate convergence and back arc extension. The CA has been struck repeatedly by destructive historical earthquakes, but knowledge of active faults and source parameters is relatively poor, particularly for seismogenic structures extending offshore. We analysed the fine structure of major tectonic features likely to have been sources of past earthquakes: (i) the NNW–SSE trending Malta STEP (Slab Transfer Edge Propagator) fault system, representing a lateral tear of the subduction system; (ii) the out-of-sequence thrusts (splay faults) at the rear of the salt-bearing Messinian accretionary wedge; and (iii) the Messina Straits fault system, part of the wide deformation zone separating the western and eastern lobes of the accretionary wedge. Our findings have implications for seismic hazard in southern Italy, as we compile an inventory of first order active faults that may have produced past seismic events such as the 1908, 1693 and 1169 earthquakes. These faults are likely to be source regions for future large magnitude events as they are long, deep and bound sectors of the margin characterized by different deformation and coupling rates on the plate interface.


2020 ◽  
Author(s):  
Marco Bonini ◽  
Daniele Maestrelli ◽  
Federico Sani

<p>Mud volcanism is known to be strictly linked to anticlines, since these structures have the ability to trap hydrocarbons and other fluids into reservoirs placed at their core, where large overpressures may be generated. Despite mud volcanoes have been widely studied, a central and still debated theme is (i) how fluids are able to migrate upward bypassing the overburden and erupt at surface, and (ii) which role near-structures (i.e. structure directly linked to the mud volcano system, or located not far from it) and far-structures (i.e. faults located far away from the mud volcano system) may play in this process. In an effort to address these questions, we investigated the role of both types of structures in the genesis and evolution of mud volcanoes. In particular, we show six mud volcano case studies from the Emilia-Romagna and Marche pede-Apennine margin, in Italy. We integrated fieldwork data and interpretation of available seismic reflection profiles whit aerial photo analysis. Our results support the intimate link of the investigated mud volcano systems with anticline structures on top of which they are typically emplaced. We then discuss two distinct settings for fluid migration and mud volcano formation, particularly: (i) mud volcanoes emplaced on outcropping anticlines, and (ii) mud volcanoes located on top of buried structures, discerning when fluids are likely to exploit anticline-related fracture sets, or secondary structures and porosity. Finally, we speculate on how far-structures may still play a crucial role, via seismic triggering, in the occurrence of historical eruptions of some of the investigated mud volcano systems.</p>


Author(s):  
C. Jatu

Mud volcanoes in Grobogan are referred as the Grobogan Mud Volcanoes Complex in Central Java where there is evidence of oil seepages. This comprehensive research is to determine the characteristics and hydrocarbon potential of the mud volcanoes in the Central Java region as a new opportunity for hydrocarbon exploration. The Grobogan Mud Volcano Complex consists of eight mud volcanoes that have its characteristics based on the study used the geological surface data and seismic literature as supporting data on eight mud volcanoes. The determination of geological surface characteristics is based on geomorphological analysis, laboratory analysis such as petrography, natural gas geochemistry, water analysis, mud geochemical analysis and biostratigraphy. Surface data and subsurface data are correlated, interpreted, and validated to make mud volcano system model. The purpose of making the mud volcanoes system model is to identify the hydrocarbon potential in Grobogan. This research proved that each of the Grobogan Mud Volcanoes has different morphological forms. Grobogan Mud Volcanoes materials are including muds, rock fragments, gas, and water content with different elemental values. Based on this research result, there are four mud volcano systems models in Central Java, they are Bledug Kuwu, Maesan, Cungkrik, and Crewek type. The source of the mud is from Ngimbang and Tawun Formation (Middle Eocene to Early Miocene) from biostratigraphy data and it been correlated with seismic data. Grobogan Mud Volcanoes have potential hydrocarbons with type III kerogen of organic matter (gas) and immature to early mature level based on TOC vs HI cross plot. The main product are thermogenic gas and some oil in relatively small quantities. Water analysis shows that it has mature sodium chloride water. This analysis also shows the location was formed within formations that are deposited in a marine environment with high salinity. Research of mud volcanos is rarely done in general. However, this comprehensive research shows the mud volcano has promising hydrocarbon potential and is a new perspective on hydrocarbon exploration.


The Holocene ◽  
2019 ◽  
Vol 29 (6) ◽  
pp. 975-991 ◽  
Author(s):  
Lisa Borgatti ◽  
Bosi Giovanna ◽  
Bracci Antonio Edoardo ◽  
Cremonini Stefano ◽  
Falsone Gloria ◽  
...  

Among natural hazards, mud volcanoes can damage property and infrastructures and affect hillslope evolution at different spatial and temporal scales. The results of 10-year-long multidisciplinary investigations performed on a Roman-age archaeological site, La Rovina di Montegibbio, are presented, showing a peculiar example of mutual interplay between human settlement and geological forcing in the mud-volcanic environment. The site (350 m a.s.l.) lies at the termination of the upper Secchia River catchment, near the town of Sassuolo (Modena Province). Here, a 4-km-long mud volcano belt borders the Apennines chain front, comprising one of the most prominent mud volcanoes of Italy ( Salsa di Montegibbio), and the still-active chain hinge tectonics gives origin to gas and oil seeps. Based on geological, geoarchaeological, palaeobotanical, geochemical, geophysical records and analytical data, we unravel the onset, the evolution and the abandonment of the settlement in relation to the existence of a previously unknown mud volcano, belonging to the larger Montegibbio mud volcano system. The damages affecting the Roman-age buildings record the ground deformations in the context of mud volcano tectonics. In particular, the pattern of faults set buried under the archaeological site is shown and compared with that of the main mud volcano conduit. At least two Roman-age eruptive episodes have been recorded, whose ejected muds are geochemically characterized. The first recorded eruption must be regarded as the reason for the initial location and function of the sacred ancient settlement. The final site abandonment was because of subsequent severe ground deformations affecting the hillslope as a consequence of mud volcano activity.


2020 ◽  
Vol 5 (1) ◽  
pp. 64-77
Author(s):  
L. I. Ryabushko ◽  
A. V. Bondarenko

Mud volcanoes are one of unique natural phenomena widely spread around the world. They can be found in Crimea, including the Bulganak sopochnoe field – the largest cluster of active mud volcanoes on the peninsula (45°25′29.04″N, 36°27′51.64″E). Study of mud volcano microalgae in Crimea, as well as in other regions of Russia, has not been conducted so far. Therefore, scientific interest is caused by need and urgency of the study of these volcanoes. First data on microalgae species composition of active mud volcanoes are presented in this article. Samples collected by O. Yu. Eremin (03.08.2012 and 13.04.2013) in the upper 2–3-cm layer of suspension and in surface water were investigated. The ranges of salinity and water temperature were 27–32 g per L and +28…+31 °C, respectively. Microalgae species composition was determined in water preparations using Axioskop 40 (Carl Zeiss) light microscope at magnification of 10×40 with software AxioVision Rel. 4.6. Totally 16 taxa were found: Cyanobacteria (1), Dinophyta (2), Bacillariophyta (6), and Euglenophyta (7). Of these, cyanobacteria Chamaecalyx swirenkoi (Schirshov) Komárek et Anagnostidis, 1986 was found by us in the mud volcano in August 2012. Pennate species of diatoms were also identified – single living (of genera Cylindrotheca (Ehrenberg) Reimann & J. C. Lewin, Lyrella Karajeva, and Nitzschia Hassall) and colonial species (of genera Berkeleya Greville and Pseudo-nitzschia H. Peragallo). The brackish-water, benthic, boreal-tropical species Nitzschia thermaloides Hustedt was recorded for the algal flora of Crimea, the Black Sea, and the Sea of Azov for the first time. Euglenophytes were also found in the samples – 5 species of the genus Trachelomonas Ehrenberg and 2 species of the genus Strombomonas Deflandre. Of all the species found in the mud volcano ecotope, 7 species are common for the Black Sea, and 9 species, including 3 euglenophytes, are common for the Sea of Azov. It is shown that by characteristics of halobility, species found in the mud volcano belong to freshwater complex (53 %), with a significant share of marine (27 %) and brackish-water (20 %) species. Of the phytogeographic flora elements, boreal species make up 33 %, boreal-tropical – 47 %, and cosmopolites – 20 %. Three species of potentially toxic algae are recorded: diatom Pseudo-nitzschia prolongatoides (Hasle) Hasle, 1993, as well as dinophytes Prorocentrum lima (Ehrenberg) Dodge, 1975 and Alexandrium tamiyavanichii Balech, 1994. The last species is marine, boreal-tropical, and new to the algology of Crimea, the Black Sea, and the Sea of Azov. In the article, own and literary data on morphology, ecology, and phytogeography of species, as well as on their general distribution in different waterbodies of the world, are also presented. Some microalgae species are indicators of saprobity; they are able to participate in purification of water from organic substances. Photos of mud volcanoes and micrographs of some species are presented.


2015 ◽  
Vol 414 ◽  
pp. 144-155 ◽  
Author(s):  
Yoshiro Nishio ◽  
Akira Ijiri ◽  
Tomohiro Toki ◽  
Yuki Morono ◽  
Masaharu Tanimizu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document