scholarly journals Supplementary material to "Multi-cooperation of soil biota in the plough layer is the key for conservation tillage to improve N availability and crop yield"

Author(s):  
Shixiu Zhang ◽  
Liang Chang ◽  
Neil B. McLaughlin ◽  
Shuyan Cui ◽  
Haitao Wu ◽  
...  
2020 ◽  
Author(s):  
Shixiu Zhang ◽  
Liang Chang ◽  
Neil B. McLaughlin ◽  
Shuyan Cui ◽  
Haitao Wu ◽  
...  

Abstract. Conservation tillage facilitates constructing a more complex and heterogeneous distribution of soil organisms in the plough layer relative to conventional tillage (CT), which results in an improvement in crop yield and nitrogen (N) uptake. However, knowledge of how soil biota interact to couple mineralization of N and promote plant growth is still limited. The contribution of soil biota (trophic groups and energy pathways) to soil N mineralization and the relationship between energy pathways and grain yield during soybean (Glycine max Merr.) growing season were investigated at 0–5 and 5–15 cm depths under a long-term tillage trial. The trial was initiated in 2001 on a Black soil in Northeastern China and included no tillage (NT), ridge tillage (RT) and CT. A higher contribution of most trophic groups to soil N mineralization throughout the whole plough layer was observed in RT and NT than in CT, and these differences were more pronounced for higher trophic groups than for lower ones. Furthermore, the responses of trophic groups to tillage practices were also transferred into the energy pathways. Bacterial and predator-prey pathways released more mineral N in RT and NT than in CT. Multiple regression models revealed that soybean yield was significantly related to the mineralized N in RT and NT through root, fungal and prey-predator pathways in 0–5 cm and bacterial pathway in 5–15 cm. Additionally, the relative contribution of the mineralized N by different pathways to soybean yield was different in 0–5 cm and decreased in the order of root pathway (0.487) > fungal pathway (0.389) > predator-prey pathway (0.318). Although soil trophic groups coupled with N mineralization and soybean yield varied with depth in RT and NT soils, a stable supply of mineral N from soil to plant could be maintained in the plough layer by the cooperation of predator-prey pathway horizontally with bacterial and plant pathways and vertically with fungal and bacterial pathways. This favorable effect of multi-cooperation of soil biota on coupling N mineralization and plant growth in the plough layer is a cornerstone of conservation tillage benefits in temperate areas of the world.


2001 ◽  
Vol 1 ◽  
pp. 767-776 ◽  
Author(s):  
E.D. Lund ◽  
M.C. Wolcott ◽  
G.P. Hanson

Soil texture varies significantly within many agricultural fields. The physical properties of soil, such as soil texture, have a direct effect on water holding capacity, cation exchange capacity, crop yield, production capability, and nitrogen (N) loss variations within a field. In short, mobile nutrients are used, lost, and stored differently as soil textures vary. A uniform application of N to varying soils results in a wide range of N availability to the crop. N applied in excess of crop usage results in a waste of the grower’s input expense, a potential negative effect on the environment, and in some crops a reduction of crop quality, yield, and harvestability. Inadequate N levels represent a lost opportunity for crop yield and profit. The global positioning system (GPS)-referenced mapping of bulk soil electrical conductivity (EC) has been shown to serve as an effective proxy for soil texture and other soil properties. Soils with a high clay content conduct more electricity than coarser textured soils, which results in higher EC values. This paper will describe the EC mapping process and provide case studies of site-specific N applications based on EC maps. Results of these case studies suggest that N can be managed site-specifically using a variety of management practices, including soil sampling, variable yield goals, and cropping history.


2012 ◽  
Vol 16 (12) ◽  
pp. 4725-4735 ◽  
Author(s):  
M. Temesgen ◽  
S. Uhlenbrook ◽  
B. Simane ◽  
P. van der Zaag ◽  
Y. Mohamed ◽  
...  

Abstract. Adoption of soil conservation structures (SCS) has been low in high rainfall areas of Ethiopia mainly due to crop yield reduction, increased soil erosion following breaching of SCS, incompatibility with the tradition of cross plowing and water-logging behind SCS. A new type of conservation tillage (CT) involving contour plowing and the construction of invisible subsoil barriers using a modified Maresha winged "subsoiler" is suggested as a means to tackle these problems as an integral part of the SCS. We investigated the effect of integrating the CT with SCS on the surface runoff, water-logging, soil loss, crop yield and plowing convenience. The new approach of conservation tillage has been compared with traditional tillage (TT) on 5 farmers' fields in a high rainfall area in the upper Blue Nile (Abbay) river basin. Test crops were wheat [triticum vulgare] and tef [eragrostis tef]. Farmers found CT convenient to apply between SCS. Surface runoff appeared to be reduced under CT by 48 and 15%, for wheat and tef, respectively. As a result, CT reduced sediment yield by 51 and 9.5%, for wheat and tef, respectively. Significantly reduced water-logging was observed behind SCS in CT compared to TT. Grain yields of wheat and tef increased by 35 and 10%, respectively, although the differences were not statistically significant apparently due to high fertility variations among fields of participating farmers. Farmers who tested CT indicated that they will continue this practice in the future.


2021 ◽  
Author(s):  
Cong He ◽  
Jia‐Rui Niu ◽  
Cheng‐Tang Xu ◽  
Shou‐Wei Han ◽  
Wei Bai ◽  
...  

1999 ◽  
Vol 13 (2) ◽  
pp. 347-353 ◽  
Author(s):  
Robert E. Blackshaw ◽  
Greg Semach ◽  
Xiangju Li ◽  
John T. O'Donovan ◽  
K. Neil Harker

A 4-yr field experiment was conducted to determine the merits of combining cultural and chemical controls to manage foxtail barley in reduced-tillage systems. Factors studied were crop row spacing, seeding rate, and application rate and timing of glyphosate within a spring wheat-flax cropping sequence. Glyphosate applied preseeding at 400 or 800 g/ha killed foxtail barley seedlings but only suppressed established perennial plants. Glyphosate applied postharvest at 800 g/ha killed 60 to 70% of established plants. Combinations of preseeding and postharvest glyphosate gave the greatest reductions in foxtail barley biomass and seed production and resulted in the greatest increases in crop yield. Including flax in the rotation allowed use of grass herbicides such as quizalofop or sethoxydim that effectively controlled foxtail barley seedlings and provided some suppression of perennial plants. An increase in wheat seeding rate from 75 to 115 kg/ha reduced foxtail barley growth and increased wheat yield in 3 of 4 yr. Increasing the flax seeding rate from 40 to 80 kg/ha or reducing wheat and flax row spacing from 30 to 20 cm provided little benefit in managing foxtail barley or increasing crop yield. A multiyear approach combining agronomic practices and timely use of herbicides should allow growers to effectively manage foxtail barley in annual cropping systems using conservation tillage.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7093
Author(s):  
Solmaz Rasoulzadeh Gharibdousti ◽  
Gehendra Kharel ◽  
Arthur Stoecker

Best management practices (BMPs) are commonly used to reduce sediment loadings. In this study, we modeled the Fort Cobb Reservoir watershed located in southwestern Oklahoma, USA using the Soil and Water Assessment Tool (SWAT) and evaluated the impacts of five agricultural BMP scenarios on surface runoff, sediment yield, and crop yield. The hydrological model, with 43 sub-basins and 15,217 hydrological response units, was calibrated (1991–2000) and validated (2001–2010) against the monthly observations of streamflow, sediment grab samples, and crop-yields. The coefficient of determination (R2), Nash-Sutcliffe efficiency (NS) and percentage bias (PB) were used to determine model performance with satisfactory values of R2 (0.64 and 0.79) and NS (0.61 and 0.62) in the calibration and validation period respectively for streamflow. We found that contouring practice reduced surface runoff by more than 18% in both conservation tillage and no-till practices for all crops used in this modeling study. In addition, contour farming with either conservation tillage or no-till practice reduced sediment yield by almost half. Compared to the conservation tillage practice, no-till practice decreased sediment yield by 25.3% and 9.0% for cotton and grain sorghum, respectively. Using wheat as cover crop for grain sorghum generated the lowest runoff followed by its rotation with canola and cotton regardless of contouring. Converting all the crops in the watershed into Bermuda grass resulted in significant reduction in sediment yield (72.5–96.3%) and surface runoff (6.8–38.5%). The model can be used to provide useful information for stakeholders to prioritize ecologically sound and feasible BMPs at fields that are capable of reducing sediment yield while increasing crop yield.


2011 ◽  
Vol 71 (4) ◽  
pp. 615-622 ◽  
Author(s):  
Ingrid Martinez G ◽  
Carlos Ovalle ◽  
Alejandro Del Pozo ◽  
Hamil Uribe ◽  
Natalia Valderrama V ◽  
...  

2011 ◽  
Vol 10 (6) ◽  
pp. 860-866 ◽  
Author(s):  
Qiu-xiang TANG ◽  
Shao-kun LI ◽  
Rui-zhi XIE ◽  
Jian-xin ZHANG ◽  
Tian-zhi REN ◽  
...  

2018 ◽  
pp. 248-259 ◽  
Author(s):  
Daniele Massa ◽  
Luca Incrocci ◽  
Luca Botrini ◽  
Giulia Carmassi ◽  
Cecilia Diara ◽  
...  

Spinach is one of the most important green-leafy vegetables, consumed worldwide, and its intake is beneficial for human beings. In this crop, produce yield and quality are closely related to plant nitrogen (N) nutrition. A precise supply of N is also essential for high environmental and economic sustainability. Main aims of the work were: i) to establish relationships between produce yield or quality and mineral N availability in the root zone; and ii) to define an optimal mineral N level to be maintained in the root zone for spinach. Eight experiments were carried out during a four-year-long period under typical Mediterranean climate conditions. Different amounts of N fertilisers were supplied leading to twenty different levels of mineral N in the root zone. Experimental measurements included climate parameters, plant growth, tissue and soil analyses, produce yield and quality indicators. A segmented linear model significantly represented the relationship between crop yield (1.7 to 21.7 t ha–1) and soil mineral N concentration (7.6 to 41.0 mg kg–1). Basing on this model, an optimal mineral N threshold was fixed at 23.4 mg kg–1. Above this threshold, crop yield did not show any significant variations as well as tissue characteristics and produce quality. Plants grown under suboptimal N levels showed reduction in growth, tissue mineral (nutrients) content, and SPAD index. The proposed models could be implemented in fertilisation protocols for the optimization of N supply and the estimation of spinach growth and yield.


Sign in / Sign up

Export Citation Format

Share Document