scholarly journals Temperature and strain controls on ice deformation mechanisms: insights from the microstructures of samples deformed to progressively higher strains at −10, −20 and −30 °C

2020 ◽  
Vol 14 (11) ◽  
pp. 3875-3905
Author(s):  
Sheng Fan ◽  
Travis F. Hager ◽  
David J. Prior ◽  
Andrew J. Cross ◽  
David L. Goldsby ◽  
...  

Abstract. In order to better understand ice deformation mechanisms, we document the microstructural evolution of ice with increasing strain. We include data from experiments at relatively low temperatures (−20 and −30 ∘C), where the microstructural evolution with axial strain has never before been documented. Polycrystalline pure water ice was deformed under a constant displacement rate (strain rate ∼1.0×10-5 s−1) to progressively higher strains (∼ 3 %, 5 %, 8 %, 12 % and 20 %) at temperatures of −10, −20 and −30 ∘C. Microstructural data were generated from cryogenic electron backscattered diffraction (cryo-EBSD) analyses. All deformed samples contain subgrain (low-angle misorientations) structures with misorientation axes that lie dominantly in the basal plane, suggesting the activity of dislocation creep (glide primarily on the basal plane), recovery and subgrain rotation. Grain boundaries are lobate in all experiments, suggesting the operation of strain-induced grain boundary migration (GBM). Deformed ice samples are characterized by interlocking big and small grains and are, on average, finer grained than undeformed samples. Misorientation analyses between nearby grains in 2-D EBSD maps are consistent with some 2-D grains being different limbs of the same irregular grain in the 3-D volume. The proportion of repeated (i.e. interconnected) grains is greater in the higher-temperature experiments suggesting that grains have more irregular shapes, probably because GBM is more widespread at higher temperatures. The number of grains per unit area (accounting for multiple occurrences of the same 3-D grain) is higher in deformed samples than undeformed samples, and it increases with strain, suggesting that nucleation is involved in recrystallization. “Core-and-mantle” structures (rings of small grains surrounding big grains) occur in −20 and −30 ∘C experiments, suggesting that subgrain rotation recrystallization is active. At temperatures warmer than −20 ∘C, c axes develop a crystallographic preferred orientation (CPO) characterized by a cone (i.e. small circle) around the compression axis. We suggest the c-axis cone forms via the selective growth of grains in easy slip orientations (i.e. ∼ 45∘ to shortening direction) by GBM. The opening angle of the c-axis cone decreases with strain, suggesting strain-induced GBM is balanced by grain rotation. Furthermore, the opening angle of the c-axis cone decreases with temperature. At −30 ∘C, the c-axis CPO changes from a narrow cone to a cluster, parallel to compression, with increasing strain. This closure of the c-axis cone is interpreted as the result of a more active grain rotation together with a less effective GBM. We suggest that lattice rotation, facilitated by intracrystalline dislocation glide on the basal plane, is the dominant mechanism controlling grain rotation. Low-angle neighbour-pair misorientations, relating to subgrain boundaries, are more extensive and extend to higher misorientation angles at lower temperatures and higher strains supporting a relative increase in the importance of dislocation activity. As the temperature decreases, the overall CPO intensity decreases, primarily because the CPO of small grains is weaker. High-angle grain boundaries between small grains have misorientation axes that have distributed crystallographic orientations. This implies that, in contrast to subgrain boundaries, grain boundary misorientation is not controlled by crystallography. Nucleation during recrystallization cannot be explained by subgrain rotation recrystallization alone. Grain boundary sliding of finer grains or a different nucleation mechanism that generates grains with random orientations could explain the weaker CPO of the fine-grained fraction and the lack of crystallographic control on high-angle grain boundaries.

2020 ◽  
Author(s):  
Sheng Fan ◽  
Travis Hager ◽  
David J. Prior ◽  
Andrew J. Cross ◽  
David L. Goldsby ◽  
...  

Abstract. Understanding ice deformation mechanisms is crucial for understanding the dynamic evolution of terrestrial and planetary ice flow. To understand better the deformation mechanisms, we document the microstructural evolution of ice with increasing strain. We include data from deformation at relatively low temperature (−20 and −30 °C) where the microstructural evolution has never before been documented. Polycrystalline pure water ice was deformed under a constant displacement rate (equal to the strain rate of ~1.0×10−5 s−1) at temperatures of −10, −20 and −30 °C to progressively higher true axial strains (~ 3, 5, 8, 12 and 20 %). Mechanical data show peak and steady-state stresses are larger at colder temperatures as expected from the temperature dependency of creep. Cryo-electron backscattered diffraction (EBSD) analyses show distinct sub-grain boundaries in all deformed samples, suggesting activation of recovery and subgrain rotation. Deformed ice samples are characterised by big grains interlocking with small grains. For each temperature series, we separated big grains from small grains using a threshold grain size, which equals to the square mean root diameter at ~ 12 % strain. Big grains are more lobate at −10 °C than at colder temperatures, suggesting grain boundary migration (GBM) is more prominent at warmer temperatures. The small grains are smaller than subgrains at −10 °C and they become similar in size at −20 and −30 °C, suggesting bulge nucleation facilitates the recrystallization process at warmer temperature and subgrain rotation recrystallization is the nucleation mechanism at colder temperatures. At temperatures warmer than −15 °C, c-axes develop a crystallographic preferred orientation (CPO) characterized by a cone (i.e., small circle) around the compression axis. We suggest the c-axis cone forms as a result of selective growth of grains at easy slip orientations (i.e., ~ 45° to shortening direction) by strain-energy driven GBM. This particular finding is consistent with previous works. The opening-angle of the c-axis cone decreases with strain, suggesting strain-induced GBM is balanced by grain rotation. Furthermore, the opening-angle of the c-axis cone decreases with temperature. At −30 °C, the c-axis CPO transits from a narrow cone to a cluster, parallel to compression, with increasing strain. This closure of the c-axis cone is interpreted as the result of a more active grain rotation together with a less effective GBM. As the temperature decreases, the overall CPO intensity decreases, facilitated by the CPO weakening in small grains. We suggest the grain size sensitivity of grain boundary sliding (GBS) favours a faster strain rate in small grains and leads to the CPO weakening at cold temperatures. CPO development cannot provide a uniform explanation for the mechanical weakening (enhancement) after peak stress. Grain size reduction, which can be observed in all deformed samples, is most likely to cause weakening (enhancement) and should be considered to have a significant control on the rheology of natural ice flow.


Author(s):  
J. W. Matthews ◽  
W. M. Stobbs

Many high-angle grain boundaries in cubic crystals are thought to be either coincidence boundaries (1) or coincidence boundaries to which grain boundary dislocations have been added (1,2). Calculations of the arrangement of atoms inside coincidence boundaries suggest that the coincidence lattice will usually not be continuous across a coincidence boundary (3). There will usually be a rigid displacement of the lattice on one side of the boundary relative to that on the other. This displacement gives rise to a stacking fault in the coincidence lattice.Recently, Pond (4) and Smith (5) have measured the lattice displacement at coincidence boundaries in aluminum. We have developed (6) an alternative to the measuring technique used by them, and have used it to find two of the three components of the displacement at {112} lateral twin boundaries in gold. This paper describes our method and presents a brief account of the results we have obtained.


Author(s):  
C. W. Price

Little evidence exists on the interaction of individual dislocations with recrystallized grain boundaries, primarily because of the severely overlapping contrast of the high dislocation density usually present during recrystallization. Interesting evidence of such interaction, Fig. 1, was discovered during examination of some old work on the hot deformation of Al-4.64 Cu. The specimen was deformed in a programmable thermomechanical instrument at 527 C and a strain rate of 25 cm/cm/s to a strain of 0.7. Static recrystallization occurred during a post anneal of 23 s also at 527 C. The figure shows evidence of dissociation of a subboundary at an intersection with a recrystallized high-angle grain boundary. At least one set of dislocations appears to be out of contrast in Fig. 1, and a grainboundary precipitate also is visible. Unfortunately, only subgrain sizes were of interest at the time the micrograph was recorded, and no attempt was made to analyze the dislocation structure.


1992 ◽  
Vol 295 ◽  
Author(s):  
Stuart Mckernan ◽  
C. Barry Carter

AbstractGeneral high-angle tilt grain boundaries may be described by an arrangement of repeating structural units. Some grain-boundary defects may also be modeled by the incorporation of structural units of related boundary structures into the boundary. The simulation of these structures requires the use of prohibitively large unit cells. The possibility of modeling these boundaries by the superposition of image simulations of the individual structural units isinvestigated.


1991 ◽  
Vol 238 ◽  
Author(s):  
Douglas E. Meyers ◽  
Alan J. Ardell

ABSTRACTThe results of our initial efforts at measuring the fracture strengths of grain boundaries In Ni3Al using a miniaturized disk-bend test are presented. The samples tested were 3 mm in diameter and between 150 and 300 μm thick. An Ingot of directlonally-solidlfled, boron-free Ni3Al containing 24% Al was annealed between 1300 and 1350 °C to induce grain growth, producing many grain boundaries In excess of 1.5 mm in length. Specimens were cut from these In such a way that one long grain boundary was located near a diameter of the specimen. The relative orientations of the grains on either side of the boundary were determined from electron channeling patterns. Low-angle boundaries are so strong they do not fracture; Instead the samples deform In a completely ductile manner. High-angle boundaries always fracture, but only after considerable plastic deformation of the two grains flanking them. Fracture is Indicated by a load drop in the load vs. displacement curves. A method involving extrapolation of the elastic portion of these curves to the displacement at fracture is used to estimate the fracture stresses. This procedure yields consistent values of the fracture strengths of high-angle boundaries. The measured stresses are large (∼2 to 3 GPa), but considerably smaller than those required for the fracture of special boundaries, as predicted by computer simulations. No correlation was found between the fracture stresses or loads and the geometry of the high-angle boundaries, many of which are close to, but deviate from, coincident site lattice orientations.


1990 ◽  
Vol 5 (5) ◽  
pp. 919-928 ◽  
Author(s):  
S. E. Babcock ◽  
D. C. Larbalestier

Regular networks of localized grain boundary dislocations (GBDs) have been imaged by means of transmission electron microscopy in three different types of high-angle grain boundaries in YBa2Cu3O7-δ, implying that these boundaries possess ordered structures upon which a significant periodic strain field is superimposed. The occurrence of these GBD networks is shown to be consistent with the GBD/Structural Unit and Coincidence Site Lattice (CSL)/Near CSL descriptions for grain boundary structure. Thus, these dislocations appear to be intrinsic features of the boundary structure. The spacing of the observed GBDs ranged from ∼10 nm to ∼100 nm. These GBDs make the grain boundaries heterogeneous on a scale that approaches the coherence length and may contribute to their weak-link character by producing the “superconducting micro-bridge” microstructure which has been suggested on the basis of detailed electromagnetic measurements on similar samples.


2005 ◽  
Vol 475-479 ◽  
pp. 2995-2998
Author(s):  
Jian Ting Guo ◽  
Rong Shi Chen ◽  
Xing Hao Du ◽  
Gu Song Li ◽  
Lan Zhang Zhou

The microstructural evolution during superplastic deformation of the extruded stoichiometric NiAl polycrystals were systemically investigated in various conditions of temperature, strain rate and strain by means of optical microscopy (OM) and transmission electron microscopy (TEM). Consequently, The deformation microstructures corresponding to the large tensile elongation consisted of subgrains, low angle grains as well as high angle grains, which indicated that continuous dynamic recrystallization (CDRX) process was operating during superplastic deformation.


1998 ◽  
Vol 13 (3) ◽  
pp. 778-783 ◽  
Author(s):  
Yumi H. Ikuhara ◽  
Shinji Kondoh ◽  
Koichi Kikuta ◽  
Shin-ichi Hirano

Microstructures of ulexite were investigated by CTEM and low electron dose HREM. It was found that the longitudinal grains in ulexite were oriented to c-direction to form a bundle structure. There were a number of small-angle grain boundaries and stacking faults inside a grain in the ulexite. Cleavage microcracks and stacking faults were mostly introduced on the {010} of the ulexite. The high-angle grain boundaries mainly consisted of high coincidence boundaries, which was confirmed by a comparison of observed contact angles and calculated degree of coincidence at the boundaries. The light transmittance properties of the ulexite would depend on the defects such as stacking fault, small-angle grain boundary, and high-angle grain boundary.


2009 ◽  
Vol 633-634 ◽  
pp. 511-525
Author(s):  
Wei Zhong Han ◽  
Shou Xin Li ◽  
Shi Ding Wu ◽  
Zhe Feng Zhang

The deformation mechanisms of various kinds of single crystals and bicrystals during the process of equal channel angular pressing (ECAP) have been paid more attention world wide. This paper reviews the recent progresses in the understanding of the deformation mechanisms of single crystals and bicrystals subjected to one-pass ECAP, and discusses the effect of initial crystallographic orientation and grain boundary on the microstructural evolution of these crystals. Based on those experimental results and analysis, it is suggested that in addition to the shear deformation along the intersection plane (IP) of ECAP die, the shear along the normal of IP also plays an important role in affecting the microstructural evolution and deformation mechanisms of these single crystals and bicrystals.


2013 ◽  
Vol 747-748 ◽  
pp. 912-918 ◽  
Author(s):  
Xue Zhang ◽  
Yi Chen ◽  
Feng Shou Zhang ◽  
Jun Ting Yang ◽  
Yun Jin Lai ◽  
...  

After two-stage annealing heat treatment process, the near β-Titanium alloys reveal a mixed microstructure containing lath-like α phase and finer acicular α phase in β matrix, leading to the improvement of strength-ductility balance. In this paper, the microstructural evolution and the behaviour of α precipitate during high temperature ageing process were investigated by SEM in a near β-Titanium alloy called Ti-55531.The relationship between α precipitates and the β grain orientation in high temperature was investigated by EBSD. The results show that the α-phase precipitated only at some places of the β grain boundaries at higher ageing temperature (~780 °C); the amount of grain boundary α increased with the decreased of the ageing temperature; after ageing at 720 °C for 45 min, we found that the α-phase precipitated not only at grain boundaries but also within the grains. It seems that the precipitation of grain boundary α is strongly influenced by β grain boundary energy which means that grain boundary α tends to form preferentially at high energy grain boundaries (high-angle grain boundaries); The α-phase precipitates more easily at the grain boundaries where the {110} plane of adjacent β grains have the same orientation.


Sign in / Sign up

Export Citation Format

Share Document