scholarly journals Dispersion in deep polar firn driven by synoptic-scale surface pressure variability

Author(s):  
Christo Buizert ◽  
Jeffrey P. Severinghaus

Abstract. Commonly, three mechanisms of firn air transport are distinguished: molecular diffusion, advection, and near-surface convective mixing. Here we identify and describe a fourth mechanism, namely dispersion driven by synoptic-scale surface pressure variability (or barometric pumping). We use published gas chromatography experiments on firn samples to derive the along-flow dispersivity of firn, and combine this dispersivity with a dynamical air pressure propagation model forced by surface air pressure time series to estimate the magnitude of dispersive mixing in the firn. We show that dispersion dominates mixing within the firn lock-in zone. Trace gas concentrations measured in firn air samples from various polar sites confirm that dispersive mixing occurs. Including dispersive mixing in a firn air transport model suggests that our theoretical estimates have the correct order of magnitude, yet may overestimate the true dispersion. We further show that strong barometric pumping, such as at the Law Dome site, may reduce the gravitational enrichment δ15N-N2 and other tracers below gravitational equilibrium, questioning the traditional definition of the lock-in depth as the depth where δ15N enrichment ceases. Last, we propose that 86Kr excess may act as a proxy for past synoptic activity (or paleo-storminess) at the site.

2016 ◽  
Vol 10 (5) ◽  
pp. 2099-2111 ◽  
Author(s):  
Christo Buizert ◽  
Jeffrey P. Severinghaus

Abstract. Commonly, three mechanisms of firn air transport are distinguished: molecular diffusion, advection, and near-surface convective mixing. Here we identify and describe a fourth mechanism, namely dispersion driven by synoptic-scale surface pressure variability (or barometric pumping). We use published gas chromatography experiments on firn samples to derive the along-flow dispersivity of firn, and combine this dispersivity with a dynamical air pressure propagation model forced by surface air pressure time series to estimate the magnitude of dispersive mixing in the firn. We show that dispersion dominates mixing within the firn lock-in zone. Trace gas concentrations measured in firn air samples from various polar sites confirm that dispersive mixing occurs. Including dispersive mixing in a firn air transport model suggests that our theoretical estimates have the correct order of magnitude, yet may overestimate the true dispersion. We further show that strong barometric pumping, such as at the Law Dome site, may reduce the gravitational enrichment of δ15N–N2 and other tracers below gravitational equilibrium, questioning the traditional definition of the lock-in depth as the depth where δ15N enrichment ceases. Last, we propose that 86Kr excess may act as a proxy for past synoptic activity (or paleo-storminess) at the site.


Author(s):  
Jonathan M. Garner ◽  
William C. Iwasko ◽  
Tyler D. Jewel ◽  
Richard L. Thompson ◽  
Bryan T. Smith

AbstractA dataset maintained by the Storm Prediction Center (SPC) of 6300 tornado events from 2009–2015, consisting of radar-identified convective modes and near-storm environmental information obtained from Rapid Update Cycle and Rapid Refresh model analysis grids, has been augmented with additional radar information related to the low-level mesocyclones associated with tornado longevity, path-length, and width. All EF2–EF5 tornadoes, in addition to randomly selected EF0–EF1 tornadoes, were extracted from the SPC dataset, which yielded 1268 events for inclusion in the current study. Analysis of that data revealed similar values of the effective-layer significant tornado parameter for the longest-lived (60+ min) tornadic circulations, longest-tracked (≥ 68 km) tornadoes, and widest tornadoes (≥ 1.2 km). However, the widest tornadoes occurring west of –94° longitude were associated with larger mean-layer convective available potential energy, storm-top divergence, and low-level rotational velocity. Furthermore, wide tornadoes occurred when low-level winds were out of the southeast resulting in large low-level hodograph curvature and near-surface horizontal vorticity that was more purely streamwise compared to long-lived and long-tracked events. On the other hand, tornado path-length and longevity were maximized with eastward migrating synoptic-scale cyclones associated with strong southwesterly wind profiles through much of the troposphere, fast storm motions, large values of bulk wind difference and storm-relative helicity, and lower buoyancy.


1991 ◽  
Vol 37 (125) ◽  
pp. 89-96 ◽  
Author(s):  
Garry K. C. Clarke ◽  
Edwin D. Waddington

AbstractQuantitative understanding of the processes that couple the lower atmosphere to the upper surface of ice sheets is necessary for interpreting ice-core records. Of special interest are those processes that involve the exchange of energy or atmospheric constituents. One such process, wind pumping, entails both possibilities and provides a possible mechanism for converting atmospheric kinetic energy into a near-surface heat source within the firn layer. The essential idea is that temporal and spatial variations in surface air pressure, resulting from air motion, can diffuse into permeable firn by conventional Darcy flow. Viscous friction between moving air and the solid firn matrix leads to energy dissipation in the firn that is equivalent to a volumetric heat source.Initial theoretical work on wind pumping was aimed at explaining anomalous near-surface temperatures measured at sites on Agassiz Ice Cap, Arctic Canada. A conclusion of this preliminary work was that, under highly favourable conditions, anomalous warming of as much as 2°C was possible. Subsequent efforts to confirm wind-pumping predictions suggest that our initial estimates of the penetration depth for pressure fluctuations were optimistic. These observations point to a deficiency of the initial theoretical formulation — the surface-pressure forcing was assumed to vary temporally, but not spatially. Thus, within the firn there was only a surface-normal component of air flow. The purpose of the present contribution is to advance a three-dimensional theory of wind pumping in which air flow is driven by both spatial and temporal fluctuations in surface pressure. Conclusions of the three-dimensional analysis are that the penetration of pressure fluctuations, and hence the thickness of the zone of frictional interaction between air and permeable firn, is related to both the frequency of the pressure fluctuations and to the spatial coherence length of turbulence cells near the firn surface.


2017 ◽  
Author(s):  
Sara C. Pryor ◽  
Ryan C. Sullivan ◽  
Justin T. Schoof

Abstract. The static energy content of the atmosphere is increasing at the global scale, but exhibits important sub-global and sub-regional scales of variability and is a useful parameter for integrating the net effect of changes in the partitioning of energy at the surface and for improving understanding of the causes of so-called warming-holes (i.e. locations with decreasing daily maximum air temperatures (T) or increasing trends of lower magnitude than the global mean). Further, measures of the static energy content (herein the equivalent potential temperature, θe) are more strongly linked to excess human mortality and morbidity than air temperature alone, and have great relevance in understanding causes of past heat-related excess mortality and making projections of possible future events that are likely to be associated with negative human health and economic consequences. A new non-linear statistical model for summertime daily maximum and minimum θe is developed and used to advance understanding of drivers of historical change and variability over the eastern USA. It is shown that soil moisture (SM) is particularly important in determining the magnitude of θe over regions that have previously been identified as exhibiting warming holes confirming the key importance of SM in dictating the partitioning of net radiation into sensible and latent heat and dictating trends in near-surface T and θe. Consistent with our a priori expectations, models built using Artificial Neural Networks (ANN) out-perform linear models that do not permit interaction of the predictor variables (global T, synoptic-scale meteorological conditions and SM). This is particularly marked in regions with high variability in min- and max-θe, where more complex models built using ANN with multiple hidden layers are better able to capture the day-to-day variability in θe and the occurrence of extreme max-θe. Over the entire domain the ANN with 3 hidden layers exhibits high accuracy in predicting max-θe > 347 K. The median hit rate for max-θe > 347 K is > 0.60, while the median false alarm rate ≈ 0.08.


1989 ◽  
Vol 12 ◽  
pp. 104-112 ◽  
Author(s):  
D.W.S. Limbert ◽  
S.J. Morrison ◽  
C.B. Sear ◽  
P. Wadhams ◽  
M.A. Rowe

As part of the Winter Weddell Sea Project 1986 (WWSP 86), a buoy, transmitting via TIROS-N satellites to Service Argos, was inserted into an ice floe in the southern Weddell Sea. Operational U.K. Meteorological Office numerical surface-pressure analyses, which utilized the buoy’s measured values of air pressure and temperature, are used to assess the impact of weather systems on pack-ice movement. The motion of the buoy is shown to be related closely to the position of the circumpolar trough and to the tracks of depressions crossing the area. The tracks of this and other buoys deployed during WWSP 86 are analysed, together with the known drifts of some ice-bound vessels, to establish the overall movement of sea ice in the central and western Weddell Sea. Using these data, the area of ice transported northward out of the Weddell Sea is determined. Roughly 60% of the winter sea-ice cover is discharged out of the area, and is replaced by new ice formation in coastal polynyas and by influx of new ice from the east. In summer, a further 30% is discharged northward out of the region, leaving 40% cover and by implication a 30% loss by melting.


2011 ◽  
Vol 68 (3) ◽  
pp. 495-514 ◽  
Author(s):  
Curt Covey ◽  
Aiguo Dai ◽  
Dan Marsh ◽  
Richard S. Lindzen

Abstract Although atmospheric tides driven by solar heating are readily detectable at the earth’s surface as variations in air pressure, their simulations in current coupled global climate models have not been fully examined. This work examines near-surface-pressure tides in climate models that contributed to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); it compares them with tides both from observations and from the Whole Atmosphere Community Climate Model (WACCM), which extends from the earth’s surface to the thermosphere. Surprising consistency is found among observations and all model simulations, despite variation of the altitudes of model upper boundaries from 32 to 76 km in the IPCC models and at 135 km for WACCM. These results are consistent with previous suggestions that placing a model’s upper boundary at low altitude leads to partly compensating errors—such as reducing the forcing of the tides by ozone heating, but also introducing spurious waves at the upper boundary, which propagate to the surface.


2017 ◽  
Vol 17 (23) ◽  
pp. 14457-14471 ◽  
Author(s):  
Sara C. Pryor ◽  
Ryan C. Sullivan ◽  
Justin T. Schoof

Abstract. The static energy content of the atmosphere is increasing on a global scale, but exhibits important subglobal and subregional scales of variability and is a useful parameter for integrating the net effect of changes in the partitioning of energy at the surface and for improving understanding of the causes of so-called warming holes (i.e., locations with decreasing daily maximum air temperatures (T) or increasing trends of lower magnitude than the global mean). Further, measures of the static energy content (herein the equivalent potential temperature, θe) are more strongly linked to excess human mortality and morbidity than air temperature alone, and have great relevance in understanding causes of past heat-related excess mortality and making projections of possible future events that are likely to be associated with negative human health and economic consequences. New nonlinear statistical models for summertime daily maximum and minimum θe are developed and used to advance understanding of drivers of historical change and variability over the eastern USA. The predictor variables are an index of the daily global mean temperature, daily indices of the synoptic-scale meteorology derived from T and specific humidity (Q) at 850 and 500 hPa geopotential heights (Z), and spatiotemporally averaged soil moisture (SM). SM is particularly important in determining the magnitude of θe over regions that have previously been identified as exhibiting warming holes, confirming the key importance of SM in dictating the partitioning of net radiation into sensible and latent heat and dictating trends in near-surface T and θe. Consistent with our a priori expectations, models built using artificial neural networks (ANNs) out-perform linear models that do not permit interaction of the predictor variables (global T, synoptic-scale meteorological conditions and SM). This is particularly marked in regions with high variability in minimum and maximum θe, where more complex models built using ANN with multiple hidden layers are better able to capture the day-to-day variability in θe and the occurrence of extreme maximum θe. Over the entire domain, the ANN with three hidden layers exhibits high accuracy in predicting maximum θe > 347 K. The median hit rate for maximum θe > 347 K is  > 0.60, while the median false alarm rate is  ≈ 0.08.


2005 ◽  
Vol 133 (1) ◽  
pp. 120-130 ◽  
Author(s):  
Matthew J. Haugland ◽  
Kenneth C. Crawford

Abstract This manuscript documents the impact of Oklahoma’s winter wheat belt (WWB) on the near-surface atmosphere by comparing the diurnal cycle of meteorological conditions within the WWB relative to conditions in adjacent counties before and after the wheat harvest. To isolate the impact of the winter wheat belt on the atmosphere, data from several meteorological parameters were averaged to create a diurnal cycle before and after the wheat harvest. Observations from 17 Oklahoma Mesonet sites within the WWB (during a period of 9 yr) were compared with observations from 22 Mesonet sites in adjacent counties outside the winter wheat belt. The average diurnal cycles of dewpoint, temperature, and surface pressure exhibited patterns that revealed a distinct mesoscale impact of the wheat fields. The diurnal patterns were consistent with the status of the wheat crop and the grassland in adjacent counties. The impact of the WWB was shown to be more significant during a month when soil moisture was abundant, and minimal during a month when soil moisture was limited. Statistically significant, hydrostatically consistent afternoon surface pressure anomalies suggest that there is a strong possibility of weak mesoscale circulations induced by the WWB.


Sign in / Sign up

Export Citation Format

Share Document