scholarly journals Changes in Andes Mountains snow cover from MODIS data 2000–2014

Author(s):  
Freddy A. Saavedra ◽  
Stephanie K. Kampt ◽  
Steven R. Fassnacht ◽  
Jason S. Sibold

Abstract. The Andes Mountains span a length of 7,000 km and are important for sustaining regional water supplies. Snow variability across this region has not been studied in detail due to sparse and unevenly distributed instrumental climate data. We calculated snow persistence (SP) as the fraction of time with snow cover for each year between 2000–2014 from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors (500 m, 8-day maximum snow cover extent) limited between 8 °S and 36 °S due high frequency of cloud (>30 % of the time) south and north of this range. We ran Mann-Kendall and Theil-Sens analyses to identify significant areas of change in SP and snow line (the line at lower elevation which SP=20%). We evaluated whether these trends in the context of temperature and precipitation (University of Delaware dataset) and climate indices (ENSO, SAM, PDO). North of 29 °S has limited snow cover, and few trends in snow persistence were detected. A large area (70,515 km2) with persistent snow cover between 29–36 °S experienced a significant loss of snow cover (2–5 fewer days of snow year−1). Snow loss was more pronounced (62 %) on the east side of the Andes. We also found a significant increase in the elevation of 10–30 m year−1 south of 29–30 °S. Decreasing SP correlates with decreasing precipitation, increasing temperature, and climate indices and it varies with latitude and elevation. ENSO indices better predicted SP conditions north of 31 °S, and the SAM better predicted SP south of 31 °S.

2018 ◽  
Vol 12 (3) ◽  
pp. 1027-1046 ◽  
Author(s):  
Freddy A. Saavedra ◽  
Stephanie K. Kampf ◽  
Steven R. Fassnacht ◽  
Jason S. Sibold

Abstract. The Andes span a length of 7000 km and are important for sustaining regional water supplies. Snow variability across this region has not been studied in detail due to sparse and unevenly distributed instrumental climate data. We calculated snow persistence (SP) as the fraction of time with snow cover for each year between 2000 and 2016 from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors (500 m, 8-day maximum snow cover extent). This analysis is conducted between 8 and 36∘ S due to high frequency of cloud (> 30 % of the time) south and north of this range. We ran Mann–Kendall and Theil–Sens analyses to identify areas with significant changes in SP and snowline (the line at lower elevation where SP = 20 %). We evaluated how these trends relate to temperature and precipitation from Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) and University of Delaware datasets and climate indices as El Niño–Southern Oscillation (ENSO), Southern Annular Mode (SAM), and Pacific Decadal Oscillation (PDO). Areas north of 29∘ S have limited snow cover, and few trends in snow persistence were detected. A large area (34 370 km2) with persistent snow cover between 29 and 36∘ S experienced a significant loss of snow cover (2–5 fewer days of snow year−1). Snow loss was more pronounced (62 % of the area with significant trends) on the east side of the Andes. We also found a significant increase in the elevation of the snowline at 10–30 m year−1 south of 29–30∘ S. Decreasing SP correlates with decreasing precipitation and increasing temperature, and the magnitudes of these correlations vary with latitude and elevation. ENSO climate indices better predicted SP conditions north of 31∘ S, whereas the SAM better predicted SP south of 31∘ S.


2009 ◽  
Vol 13 (3) ◽  
pp. 319-326 ◽  
Author(s):  
J. Tong ◽  
S. J. Déry ◽  
P. L. Jackson

Abstract. A spatial filter (SF) is used to reduce cloud coverage in Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day maximum snow cover extent products (MOD10A2) from 2000–2007, which are obtained from MODIS daily snow cover extent products (MOD10A1), to assess the topographic control on snow cover fraction (SCF) and snow cover duration (SCD) in the Quesnel River Basin (QRB) of British Columbia, Canada. Results show that the SF reduces cloud coverage and improves by 2% the accuracy of snow mapping in the QRB. The new product developed using the SF method shows larger SCF and longer SCD than MOD10A2, with higher altitudes experiencing longer snow cover and perennial snow above 2500 m. The gradient of SCF with elevation (d(SCF)/dz) during the snowmelt season is 8% (100 m)−1. The average ablation rates of SCF are similar for different 100 m elevation bands at about 5.5% (8 days)−1 for altitudes <1500 m with decreasing values with elevation to near 0% (8 days)−1 for altitudes >2500 m. Different combinations of slopes and aspects also affect the SCF with a maximum difference of 20.9% at a given time. Correlation coefficients between SCD and elevation attain 0.96 (p<0.001). Mean gradients of SCD with elevation are 3.8, 4.3, and 11.6 days (100 m)−1 for the snow onset season, snowmelt season, and entire year, respectively. The SF decreases the standard deviations of SCDs compared to MOD10A2 with a maximum difference near 0.6 day, 0.9 day, and 1.0 day for the snow onset season, snowmelt season, and entire year, respectively.


1981 ◽  
Vol 12 (4-5) ◽  
pp. 265-274 ◽  
Author(s):  
A. Rango ◽  
J. Martinec

Results of runoff simulations from various basins using a snowmelt runoff model were analyzed in order to predict the accuracy of simulations in future applications of the model. It was found that the model can be applied to nearly any mountainous basin where snowmelt runoff is an important factor if input data on temperature, precipitation, and snow cover are available. The simulation accuracy will depend on the quality of the input data as well as on the density of observations, size of the basin, care in determination of the recession coefficient, and amount of precipitation during snowmelt. Most accurate simulations will result when: 1) temperature and precipitation are recorded at the basin mean elevation; 2) snow cover observations are available once per week; 3) several climatic stations are available for large basins; and 4) a few years of runoff records exist for determination of the recession coefficient. Decreases in simulation accuracy will be expected as these optimum conditions are compromised, however, acceptable simulations will result with the following minimum conditions: 1) temperature and precipitation data are available in the general vicinity of the basin; and 2) snow cover observations are available 2-3 times during the snowmelt season. The availability of satellite observations of snow cover extent has permitted successful application of the model to large basins.


Climate ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 57 ◽  
Author(s):  
Shubhechchha Thapa ◽  
Parveen K. Chhetri ◽  
Andrew G. Klein

The VIIRS (Visible Infrared Imaging Radiometer Suite) instrument on board the Suomi-NPP (National Polar-Orbiting Partnership) satellite aims to provide long-term continuity of several environmental data series including snow cover initiated with MODIS (Moderate Resolution Imaging Spectroradiometer). Although it is speculated that MODIS and VIIRS snow cover products may differ because of their differing spatial resolutions and spectral coverage, quantitative comparisons between their snow products are currently limited. Therefore, this study intercompares MODIS and VIIRS snow products for the 2016 Hydrological Year over the Midwestern United States and southern Canada. Two hundred and forty-four swath snow products from MODIS/Aqua (MYD10L2) and the VIIRS EDR (Environmental Data Records) (VSCMO/binary) were intercompared using confusion matrices, comparison maps and false color imagery. Thresholding the MODIS NDSI (Normalized Difference Snow Index) Snow Cover product at a snow cover fraction of 30% generated binary snow maps are most comparable to the NOAA VIIRS binary snow product. Overall agreement between MODIS and VIIRS was found to be approximately 98%. This exceeds the VIIRS accuracy requirements of 90% probability of correct typing. The agreement was highest during the winter but lower during late fall and spring. MODIS and VIIRS often mapped snow/no-snow transition zones as a cloud. The assessment of total snow and cloud pixels and comparison snow maps of MODIS and VIIRS indicate that VIIRS is mapping more snow cover and less cloud cover compared to MODIS. This is evidenced by the average area of snow in MYD10L2 and VSCMO being 5.72% and 11.43%, no-snow 26.65% and 28.67% and cloud 65.02% and 59.91%, respectively. While VIIRS and MODIS have a similar capacity to map snow cover, VIIRS has the potential to map snow cover area more accurately, for the successful development of climate data records.


2020 ◽  
Author(s):  
Luc Yannick Andréas Randriamarolaza ◽  
Enric Aguilar ◽  
Oleg Skrynyk

&lt;p&gt;Madagascar is an Island in Western Indian Ocean Region. It is mainly exposed to the easterly trade winds and has a rugged topography, which promote different local climates and biodiversity. Climate change inflicts a challenge on Madagascar socio-economic activities. However, Madagascar has low density station and sparse networks on observational weather stations to detect changes in climate. On average, one station covers more than 20 000 km&lt;sup&gt;2&lt;/sup&gt; and closer neighbor stations are less correlated. Previous studies have demonstrated the changes on Madagascar climate, but this paper contributes and enhances the approach to assess the quality control and homogeneity of Madagascar daily climate data before developing climate indices over 1950 &amp;#8211; 2018 on 28 synoptic stations. Daily climate data of minimum and maximum temperature and precipitation are exploited.&lt;/p&gt;&lt;p&gt;Firstly, the quality of daily climate data is controlled by INQC developed and maintained by Center for Climate Change (C3) of Rovira i Virgili University, Spain. It ascertains and improves error detections by using six flag categories. Most errors detected are due to digitalization and measurement.&lt;/p&gt;&lt;p&gt;Secondly, daily quality controlled data are homogenized by using CLIMATOL. It uses relative homogenization methods, chooses candidate reference series automatically and infills the missing data in the original data. It has ability to manage low density stations and low inter-station correlations and is tolerable for missing data. Monthly break points are detected by CLIMATOL and used to split daily climate data to be homogenized.&lt;/p&gt;&lt;p&gt;Finally, climate indices are calculated by using CLIMIND package which is developed by INDECIS&lt;sup&gt;*&lt;/sup&gt; project. Compared to previous works done, data period is updated to 10 years before and after and 15 new climate indices mostly related to extremes are computed. On temperature, significant increasing and decreasing decade trends of day-to-day and extreme temperature ranges are important in western and eastern areas respectively. On average decade trends of temperature extremes, significant increasing of daily minimum temperature is greater than daily maximum temperature. Many stations indicate significant decreasing in very cold nights than significant increasing in very warm days. Their trends are almost 1 day per decade over 1950 &amp;#8211; 2018. Warming is mainly felt during nighttime and daytime in Oriental and Occidental parts respectively. In contrast, central uplands are warming all the time but tropical nights do not appear yet. On rainfall, no major significant findings are found but intense precipitation might be possible at central uplands due to shortening of longest wet period and occurrence of heavy precipitation. However, no influence detected on total precipitation which is still decreasing over 1950 - 2018. Future works focus on merging of relative homogenization methodologies to ameliorate the results.&lt;/p&gt;&lt;p&gt;-------------------&lt;/p&gt;&lt;p&gt;*INDECIS is a part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union (Grant 690462).&lt;/p&gt;


2021 ◽  
Author(s):  
Xiaona Chen ◽  
Shunlin Liang ◽  
Lian He ◽  
Yaping Yang ◽  
Cong Yin

Abstract. Northern Hemisphere (NH) snow cover extent (SCE) is one of the most important indicator of climate change due to its unique surface property. However, short temporal coverage, coarse spatial resolution, and different snow discrimination approach among existing continental scale SCE products hampers its detailed studies. Using the latest Advanced Very High Resolution Radiometer Surface Reflectance (AVHRR-SR) Climate Data Record (CDR) and several ancillary datasets, this study generated a temporally consistent 8-day 0.05° gap-free SCE covering the NH landmass for the period 1981–2019 as part of the Global LAnd Surface Satellite dataset (GLASS) product suite. The development of GLASS SCE contains five steps. First, a decision tree algorithm with multiple threshold tests was applied to distinguish snow cover (NHSCE-D) with other land cover types from daily AVHRR-SR CDR. Second, gridcells with cloud cover and invalid observations were filled by two existing daily SCE products. The gap-filled gridcells were further merged with NHSCE-D to generate combined daily SCE over the NH (NHSCE-Dc). Third, an aggregation process was used to detect the maximum SCE and minimum gaps in each 8-day periods from NHSCE-Dc. Forth, the gaps after aggregation process were further filled by the climatology of snow cover probability to generate the gap-free GLASS SCE. Fifth, the validation process was carried out to evaluate the quality of GLASS SCE. Validation results by using 562 Global Historical Climatology Network stations during 1981–2017 (r = 0.61, p < 0.05) and MOD10C2 during 2001–2019 (r = 0.97, p < 0.01) proved that the GLASS SCE product is credible in snow cover frequency monitoring. Moreover, cross-comparison between GLASS SCE and surface albedo during 1982–2018 further confirmed its values in climate changes studies. The GLASS SCE data are available at https://doi.org/10.5281/zenodo.5775238 (Chen et al. 2021).


2015 ◽  
Vol 17 (1) ◽  
pp. 153-170 ◽  
Author(s):  
Ally M. Toure ◽  
Matthew Rodell ◽  
Zong-Liang Yang ◽  
Hiroko Beaudoing ◽  
Edward Kim ◽  
...  

Abstract This paper evaluates the simulation of snow by the Community Land Model, version 4 (CLM4), the land model component of the Community Earth System Model, version 1.0.4 (CESM1.0.4). CLM4 was run in an offline mode forced with the corrected land-only replay of the Modern-Era Retrospective Analysis for Research and Applications (MERRA-Land) and the output was evaluated for the period from January 2001 to January 2011 over the Northern Hemisphere poleward of 30°N. Simulated snow-cover fraction (SCF), snow depth, and snow water equivalent (SWE) were compared against a set of observations including the Moderate Resolution Imaging Spectroradiometer (MODIS) SCF, the Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover, the Canadian Meteorological Centre (CMC) daily snow analysis products, snow depth from the National Weather Service Cooperative Observer (COOP) program, and Snowpack Telemetry (SNOTEL) SWE observations. CLM4 SCF was converted into snow-cover extent (SCE) to compare with MODIS SCE. It showed good agreement, with a correlation coefficient of 0.91 and an average bias of −1.54 × 102 km2. Overall, CLM4 agreed well with IMS snow cover, with the percentage of correctly modeled snow–no snow being 94%. CLM4 snow depth and SWE agreed reasonably well with the CMC product, with the average bias (RMSE) of snow depth and SWE being 0.044 m (0.19 m) and −0.010 m (0.04 m), respectively. CLM4 underestimated SNOTEL SWE and COOP snow depth. This study demonstrates the need to improve the CLM4 snow estimates and constitutes a benchmark against which improvement of the model through data assimilation can be measured.


2014 ◽  
Vol 7 (2) ◽  
pp. 669-691 ◽  
Author(s):  
T. W. Estilow ◽  
A. H. Young ◽  
D. A. Robinson

Abstract. This paper describes the long-term, satellite-based visible snow cover extent NOAA climate data record (CDR) currently available for climate studies, monitoring, and model validation. This environmental data product is developed from weekly Northern Hemisphere snow cover extent data that have been digitized from snow cover maps onto a Cartesian grid draped over a polar stereographic projection. The data has a spatial resolution of 190.5 km at 60 ° latitude, are updated monthly, and span from 4 October 1966 to present. The data comprise the longest satellite-based CDR of any environmental variable. Access to the data are provided in netCDF format and are archived by the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA) under the satellite climate data record program (doi:10.7289/V5N014G9). The basic characteristics, history, and evolution of the dataset are presented herein. In general, the CDR provides similar spatial and temporal variability as its widely used predecessor product. Key refinements to the new CDR improve the product's grid accuracy and documentation, and bring metadata into compliance with current standards for climate data records.


2011 ◽  
Vol 5 (1) ◽  
pp. 219-229 ◽  
Author(s):  
R. D. Brown ◽  
D. A. Robinson

Abstract. An update is provided of Northern Hemisphere (NH) spring (March, April) snow cover extent (SCE) over the 1922–2010 period incorporating the new climate data record (CDR) version of the NOAA weekly SCE dataset, with annual 95% confidence intervals estimated from regression analysis and intercomparison of multiple datasets. The uncertainty analysis indicates a 95% confidence interval in NH spring SCE of ±5–10% over the pre-satellite period and ±3–5% over the satellite era. The multi-dataset analysis shows larger uncertainties monitoring spring SCE over Eurasia (EUR) than North America (NA) due to the more complex regional character of the snow cover variability and larger between-dataset variability over northern Europe and north-central Russia. Trend analysis of the updated SCE series provides evidence that NH spring snow cover extent has undergone significant reductions over the past ~90 yr and that the rate of decrease has accelerated over the past 40 yr. The rate of decrease in March and April NH SCE over the 1970–2010 period is ~0.8 million km2 per decade corresponding to a 7% and 11% decrease in NH March and April SCE respectively from pre-1970 values. In March, most of the change is being driven by Eurasia (NA trends are not significant) but both continents exhibit significant SCE reductions in April. The observed trends in SCE are being mainly driven by warmer air temperatures, with NH mid-latitude air temperatures explaining ~50% of the variance in NH spring snow cover over the 89-yr period analyzed. However, there is also evidence that changes in atmospheric circulation around 1980 involving the North Atlantic Oscillation and Scandinavian pattern have contributed to reductions in March SCE over Eurasia.


2010 ◽  
Vol 4 (4) ◽  
pp. 2483-2512
Author(s):  
R. D. Brown ◽  
D. A. Robinson

Abstract. An update is provided of Northern Hemisphere (NH) spring (March, April) snow cover extent (SCE) over the 1922–2010 period incorporating the new climate data record (CDR) version of the NOAA weekly SCE dataset, with annual 95% confidence intervals estimates from regression analysis and intercomparison of multiple datasets. The uncertainty analysis indicated a 95% confidence interval in NH spring SCE of ±5–10% over the pre-satellite period and ±3–5% over the satellite era. The multi-dataset analysis showed there are larger uncertainties monitoring spring SCE over Eurasia (EUR) than North America (NA) due to the more complex regional character of the snow cover variability with the largest dataset uncertainty located over eastern Eurasia in a large region extending from the Tibetan Plateau across northern China. Trend analysis of the updated SCE series provided evidence that NH spring snow cover extent has undergone significant reductions over the past ~90 years and that the rate of decrease has accelerated over the past 40 years. The rate of decrease in March and April NH SCE over the 1970–2010 period is ~7–8 million km2 per 100 years which corresponds to an 8–11% decrease in NH March and April SCE respectively from pre-1970 values. In March, most of the change is being driven by Eurasia (NA trends are not significant) but both continents exhibit significant SCE reductions in April. The observed trends in SCE are consistent with recent warming trends over northern mid-latitude land areas with NH SCE exhibiting significant negative correlations to air temperature anomalies in March and April. The NH spring SCE-temperature sensitivity has remained relatively stable over the period of record although there is some evidence of contrasting changes in temperature sensitivity over both continents in April. There is evidence that changes in atmospheric circulation around 1980 involving the North Atlantic Oscillation and Scandinavian Pattern have contributed to reductions in March SCE over Eurasia.


Sign in / Sign up

Export Citation Format

Share Document