scholarly journals Intercomparison of retrieval algorithms for the specific surface area of snow from near-infrared satellite data in mountainous terrain, and comparison with the output of a semi-distributed snowpack model

2013 ◽  
Vol 7 (2) ◽  
pp. 741-761 ◽  
Author(s):  
A. Mary ◽  
M. Dumont ◽  
J.-P. Dedieu ◽  
Y. Durand ◽  
P. Sirguey ◽  
...  

Abstract. This study compares different methods to retrieve the specific surface area (SSA) of snow from satellite radiance measurements in mountainous terrain. It aims at addressing the effect on the retrieval of topographic corrections of reflectance, namely slope and aspect of terrain, multiple reflections on neighbouring slopes and accounting (or not) for the anisotropy of snow reflectance. Using MODerate resolution Imaging Spectrometer (MODIS) data for six different clear sky scenes spanning a wide range of snow conditions during the winter season 2008–2009 over a domain of 46 × 50 km in the French Alps, we compared SSA retrievals with and without topographic correction, with a spherical or non-spherical snow reflectance model and, in spherical case, with or without anisotropy corrections. The retrieved SSA values were compared to field measurements and to the results of the detailed snowpack model Crocus, fed by driving data from the SAFRAN meteorological analysis. It was found that the difference in terms of surface SSA between retrieved values and SAFRAN-Crocus output was minimal when the topographic correction was taken into account, when using a retrieval method assuming disconnected spherical snow grains. In this case, the root mean square deviation was 9.4 m2 kg−1 and the mean difference was 0.1 m2 kg−1, based on 3170 pairs of observation and simulated values. The added-value of the anisotropy correction was not significant in our case, which may be explained by the presence of mixed pixels and surface roughness. MODIS retrieved data show SSA variations with elevation and aspect which are physically consistent and in good agreement with SAFRAN-Crocus outputs. The variability of the MODIS retrieved SSA within the topographic classes of the model was found to be relatively small (3.9 m2 kg−1). This indicates that semi-distributed snowpack simulations in mountainous terrain with a sufficiently large number of classes provides a representation of the snowpack variability consistent with the scale of MODIS 500 m pixels.

2010 ◽  
Vol 4 (1) ◽  
pp. 35-51 ◽  
Author(s):  
H.-W. Jacobi ◽  
F. Domine ◽  
W. R. Simpson ◽  
T. A. Douglas ◽  
M. Sturm

Abstract. The specific surface area (SSA) of the snow constitutes a powerful parameter to quantify the exchange of matter and energy between the snow and the atmosphere. However, currently no snow physics model can simulate the SSA. Therefore, two different types of empirical parameterizations of the specific surface area (SSA) of snow are implemented into the existing one-dimensional snow physics model CROCUS. The parameterizations are either based on diagnostic equations relating the SSA to parameters like snow type and density or on prognostic equations that describe the change of SSA depending on snow age, snowpack temperature, and the temperature gradient within the snowpack. Simulations with the upgraded CROCUS model were performed for a subarctic snowpack, for which an extensive data set including SSA measurements is available at Fairbanks, Alaska for the winter season 2003/2004. While a reasonable agreement between simulated and observed SSA values is obtained using both parameterizations, the model tends to overestimate the SSA. This overestimation is more pronounced using the diagnostic equations compared to the results of the prognostic equations. Parts of the SSA deviations using both parameterizations can be attributed to differences between simulated and observed snow heights, densities, and temperatures. Therefore, further sensitivity studies regarding the thermal budget of the snowpack were performed. They revealed that reducing the thermal conductivity of the snow or increasing the turbulent fluxes at the snow surfaces leads to a slight improvement of the simulated thermal budget of the snowpack compared to the observations. However, their impact on further simulated parameters like snow height and SSA remains small. Including additional physical processes in the snow model may have the potential to advance the simulations of the thermal budget of the snowpack and, thus, the SSA simulations.


2021 ◽  
Vol 1017 ◽  
pp. 11-20
Author(s):  
Evgeny A. Shoshin ◽  
Valeria V. Strokova ◽  
Zheng Mao Ye

Silicate micro- and nano-additives are multifunctional in relation to cement systems. Their application can solve a wide range of technological problems while maintaining the economic efficiency of technical solutions. The effect of silicate additives and fillers is determined by their level of dispersion, due to which the technologies for producing nano- and submicro-sized dispersed materials are being developed. The combination of mechanochemical synthesis of modified calcium hydrosilicates with subsequent thermolysis makes it possible to produce calcium silicate dispersions (SCD), which differ in polymodality of the fractional composition including submicro (10–7–10–6 m) and microdimensional (≥10–6 m) modes. The main element of the technology is the use of modifying carbohydrate, which acts as a stabilizer of hydrated phases of silicates. A comparative study of SCD produced using sucrose (sSCD) and lactose (lSCD) revealed the effect of these carbohydrates on the properties of sSCD and lSCD, as well as their effectiveness as a component of cementitious composite binder. It was found that the level of adsorption of modifying carbohydrate determines the physical properties of SCD (granulometry, specific surface area). The relatively high residual content of free sucrose (0.24%) in the composition of sSCD prevents the consolidation of silicates nanoparticles formed during the thermolysis, causes a high content of submicro sized fractions and a high specific surface area with sSCD (26.3 ± 0.7 m2/g). Lactose is absorbed by the silicate phase; the residual content of free lactose does not exceed 0.028% of lSCD. The low content of stabilizing carbohydrate contributes to the development of nanoparticle consolidation, a decrease in the specific surface area of lSCD to 13.0 ± 0.2 m2/g and content of submicrosized fractions. The residual content of free carbohydrates and particle size characteristics of sSCD and lSCD determine the nature of their influence on Cement-SCD-based concrete setting and hardening. The presence of residual sucrose in the composition of sSCD and fine fractions determines the competitive nature of the processes of retardation of hardening and acceleration of hardening of the cement system due to the nucleation effect, as a result of which the curve of the setting time is extreme. In addition, the inhibitory effect of sucrose reduces the strength of concrete on the 7th day. By the 28th day, the inhibitory effect of sucrose has been overcome, and concrete samples demonstrate an 18% increase in compressive strength with a sSCD content of 30%. The low content of residual free lactose in the composition of lSCD causes the nucleation effect. As a result, there is a monotonous reduction in the setting time of concrete mix with an increase in the content of lSCD in the composition of HF, as well as a significant increase in concrete strength (up to 127%) on the 7th day. At the same time, on the 28th day the strength of concrete increases slightly


2012 ◽  
Vol 6 (5) ◽  
pp. 939-951 ◽  
Author(s):  
N. Calonne ◽  
C. Geindreau ◽  
F. Flin ◽  
S. Morin ◽  
B. Lesaffre ◽  
...  

Abstract. We used three-dimensional (3-D) images of snow microstructure to carry out numerical estimations of the full tensor of the intrinsic permeability of snow (K). This study was performed on 35 snow samples, spanning a wide range of seasonal snow types. For several snow samples, a significant anisotropy of permeability was detected and is consistent with that observed for the effective thermal conductivity obtained from the same samples. The anisotropy coefficient, defined as the ratio of the vertical over the horizontal components of K, ranges from 0.74 for a sample of decomposing precipitation particles collected in the field to 1.66 for a depth hoar specimen. Because the permeability is related to a characteristic length, we introduced a dimensionless tensor K*=K/res2, where the equivalent sphere radius of ice grains (res) is computed from the specific surface area of snow (SSA) and the ice density (ρi) as follows: res=3/(SSA×ρi. We define K and K* as the average of the diagonal components of K and K*, respectively. The 35 values of K* were fitted to snow density (ρs) and provide the following regression: K = (3.0 ± 0.3) res2 exp((−0.0130 ± 0.0003)ρs). We noted that the anisotropy of permeability does not affect significantly the proposed equation. This regression curve was applied to several independent datasets from the literature and compared to other existing regression curves or analytical models. The results show that it is probably the best currently available simple relationship linking the average value of permeability, K, to snow density and specific surface area.


2006 ◽  
Vol 52 (179) ◽  
pp. 558-564 ◽  
Author(s):  
Margret Matzl ◽  
Martin Schneebeli

AbstractThe specific surface area (SSA) is considered an essential microstructural parameter for the characterization of snow. Photography in the near-infrared (NIR) spectrum is sensitive to the SSA. We calculated the snow reflectance from calibrated NIR images of snow-pit walls and measured the SSA of samples obtained at the same locations. This new method is used to map the snow stratigraphy. The correlation between reflectance and SSA was found to be 90%. Calibrated NIR photography allows quantitative determination of SSA and its spatial variation in a snow profile in two dimensions within an uncertainty of 15%. In an image covering 0.5–1.0 m2, even layers of 1mm thickness can be documented and measured. Spatial maps of SSA are an important tool in initializing and validating physical and chemical models of the snowpack.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Bronisław Psiuk ◽  
Anna Gerle ◽  
Małgorzata Osadnik ◽  
Andrzej Śliwa

The fine-pored materials represent a wide range of applications and searches are being continued to develop methods of their manufacturing. In the article, based on measurements on fine-grained powders of Al2O3, TiO2, and SiO2, it has been demonstrated that gelcasting can be relatively simple method of obtaining of nanoporous materials with high values of both specific surface area and open porosity. The powders were dispersed in silica sol, and the gelling initiator was NH4Cl. The usefulness of experiment design theory for developing of fine-pored materials with high porosity and specific surface area was also shown.


2018 ◽  
Author(s):  
Adam Schneider ◽  
Mark Flanner ◽  
Roger De Roo

Abstract. Snow specific surface area (SSA) is an important physical property that directly affects solar absorption of snow cover. Instrumentation to measure snow SSA is commercially available for purchase, but these instruments are costly and/or remove and destroy snow samples during data collection. To obtain rapid, repeatable, and in situ surface snow SSA measurements, we mounted infrared light emitting diodes and photodiode detectors into a 17 cm diameter black styrene dome. By flashing light emitting diodes and measuring photodiode currents, we obtain accurate 1.30 and 1.55 micron bidirectional reflectance factors (BRFs). We compare measured snow BRFs with X-ray micro computed tomography scans and Monte Carlo photon modeling to relate BRFs to snow SSA. These comparisons show an exponential relationship between snow 1.30 micron BRFs and SSA from which we calculate calibration functions to approximate snow SSA. The techniques developed here enable rapid retrieval of snow SSA by a new instrument called the Near-Infrared Emitting and Reflectance-Monitoring Dome (NERD).


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4445 ◽  
Author(s):  
Zuzana Jankovská ◽  
Marek Večeř ◽  
Ivan Koutník ◽  
Lenka Matějová

Waste scrap tyres were thermally decomposed at the temperature of 600 °C and heating rate of 10 °C·min−1. Decomposition was followed by the TG analysis. The resulting pyrolytic carbon black was chemically activated by a KOH solution at 800 °C. Activated and non-activated carbon black were investigated using high pressure thermogravimetry, where adsorption isotherms of N2, CO2, and cyclohexane were determined. Isotherms were determined over a wide range of pressure, 0.03–4.5 MPa for N2 and 0.03–2 MPa for CO2. In non-activated carbon black, for the same pressure and temperature, a five times greater gas uptake of CO2 than N2 was determined. Contrary to non-activated carbon black, activated carbon black showed improved textural properties with a well-developed irregular mesoporous-macroporous structure with a significant amount of micropores. The sorption capacity of pyrolytic carbon black was also increased by activation. The uptake of CO2 was three times and for cyclohexane ten times higher in activated carbon black than in the non-activated one. Specific surface areas evaluated from linearized forms of Langmuir isotherm and the BET isotherm revealed that for both methods, the values are comparable for non-activated carbon black measured by CO2 and for activated carbon black measured by cyclohexane. It was found out that the N2 sorption capacity of carbon black depends only on its specific surface area size, contrary to CO2 sorption capacity, which is affected by both the size of specific surface area and the nature of carbon black.


2020 ◽  
Vol 989 ◽  
pp. 543-547
Author(s):  
K.D. Naumov ◽  
Vladimir G. Lobanov

In present article gold cementation features from cyanide solutions using dendritic zinc powders are studied. The powders were obtained by electroextraction from alkaline solutions. Powders with different physical properties were obtained by means of change in current density (from 0.5 to 2 A/m2) and NaOH concentration in solution (from 100 to 400 g/dm3) at the constant zinc concentration (10 g/dm3). The physical properties of mentioned powders were studied using SEM (Jeol JSM-6390LA), BET (Gemini VII 2390) and laser diffraction (Sympatec HELOS & RODOS). It is shown that electrolytic powders have high specific surface area, which is 1.8–2.6 times larger than the surface area of ​​the zinc powder currently used for cementation. At that electrolytic powders particle size is 8-22 times larger than the particle size of powder currently used for cementation. The reason of high specific surface area is the electrolytic zinc powders dendritic structure. It was found that the obtained powders precipitate gold from cyanide solutions with a greater efficiency in a wide range of productivity. Laboratory unit simulating Merrill-Crow technology was used for cementation. Immediately ahead conducting the experiments, Na2SO3 was added to the solution in excess to remove dissolved oxygen. Zinc powders were plated by dendritic lead before loading into the laboratory setup by cementation. Lead was added as acetate (Pb (CH3COO)2). The consumption of lead acetate was 10% by weight of zinc. Correlation between the powders physical properties and the gold extraction is shown.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Maria Knadel ◽  
Lis Wollesen Jonge ◽  
Markus Tuller ◽  
Hafeez Ur Rehman ◽  
Peter Weber Jensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document