scholarly journals The recent retreat of Mexican glaciers on Citlaltépetl Volcano detected using ASTER data

2012 ◽  
Vol 6 (4) ◽  
pp. 3149-3176 ◽  
Author(s):  
J. Cortés-Ramos ◽  
H. Delgado-Granados

Abstract. Satellite imagery and net radiation data collected between 2001 and 2007 for Citlaltépetl Volcano confirm the dramatic shrinkage of Glaciar Norte and the elimination of Jamapa and Chichimeco glacier tongues. The Glaciar Norte rapidly retreated between 2001 and 2002 while for 2007 this retreat decreases considerably. Jamapa and Chichimeco tongues disappeared by 2001 as compared to the geometry shown for 1958. The Glaciar Norte lost about 72% of its surface area between 1958 and 2007. Recently, the ice loss appears to be accelerating as evidenced by the 33% areal loss in just 6 yr between 2001 and 2007. At this shrinkage rate the glaciers would be gone from the volcano by the year 2020, which is decades earlier than previously estimated. The net radiation from ASTER images and the energy fluxes calculated via the meteorological data at the glacial surface show the close relationship between glacial shrinkage and surface energy balance. The magnitude of changes in the net radiation balance allows improved understanding of glacial retreat in Mexico.

2014 ◽  
Vol 7 (4) ◽  
pp. 653
Author(s):  
Silvia Cristina De Pádua Andrade ◽  
Jéssica Ariana De Jesus Corrêa

A estimativa do saldo de radiação (Rn) em ambientes urbanos é de fundamental importância para o entendimento e a quantificação dos impactos que as estruturas presentes nas áreas urbanas causam nas trocas de energia entre a superfície e a atmosfera. Assim, o presente trabalho teve por objetivo estimar o saldo de radiação instantâneo à superfície no perímetro urbano do município de Santarém, no estado do Pará, utilizando para isto o algoritmo SEBAL (Surface Energy Balance Algorithm for Land) e duas imagens do satélite Landsat 5 - TM, correspondentes aos dias 02 de agosto de 1999 e 29 de junho de 2010. Os resultados obtidos mostraram que as áreas urbanas apresentaram os maiores valores de albedo e temperatura da superfície, e menores valores de NDVI e do saldo de radiação, enquanto que em áreas com vegetação e corpos d’água, estes valores se invertem. Na cena de 1999, os valores mínimo e máximo do Rn foram 296 e 697 W m-2, e para 2010 foram 161 e 682 W m-2, respectivamente. Observou-se uma diminuição no saldo de radiação na imagem de 2010, com maior espacialização de valores compreendidos na faixa entre 472 e 522 W m-2. De modo geral, pode-se atribuir a diminuição do (Rn) encontrado na cena de 2010, a mudança da cobertura do solo e a sazonalidade da radiação solar no momento da passagem do satélite sobre a área em estudo.   ABSTRACT: The estimate of net radiation (Rn) in urban environments is of fundamental importance for the understanding and quantification of the structures in urban areas causing the exchange of energy between the surface and the atmosphere. Thus, this study aimed to estimate the balance of instantaneous surface radiation in the urban area of the municipality of Santarem, in Para state, using for this purpose the algorithm SEBAL (Surface Energy Balance Algorithm for Land) and two images of Landsat 5 - TM, corresponding to the days August 2, 1999 and June 29, 2010. The results showed that urban areas presented the highest values of albedo and surface temperature, and lower values of NDVI and net radiation, while in areas with vegetation and water bodies, these values are reversed. In the scene of 1999, the minimum and maximum Rn values were 296 and 697 W m-2 respectively, and 2010 were 161 and 682 W m-2, respectively. There was a decrease in net radiation at the picture of 2010 with higher spatial values included in the range between 472 and 522 W m-2. In general, one can attribute the decrease of (Rn) found at the scene of 2010, the change of land cover and seasonality of solar radiation at the time the satellite passed over the area under study. Keywords: urbanization, net radiation, albedo, remote sensing, SEBAL.  


2005 ◽  
Vol 51 (174) ◽  
pp. 451-461 ◽  
Author(s):  
E.J. Klok ◽  
M. Nolan ◽  
M.R. Van Den Broeke

AbstractWe report on analysis of meteorological data for the period 27 May–20 August 2004, from two automatic weather stations on McCall Glacier, Alaska, USA, aimed at studying the relationship between climate and ablation. One station is located on a mountain ridge and the other in the ablation area where we also analyzed the energy balance. The weather station on the glacier measured an average temperature of 5.3°C (at 2 m height above surface) and wind speed of 3.1 m s−1 (at 3 m height). A sonic height ranger and ablation stakes indicate a specific mass balance of –1.94 ± 0.09 m w.e between 15 June and 20 August. The specific mass balance calculated from the surface energy balance, –2.06 ± 0.18 m w.e., is in close correspondence to this. The latter is the sum of 0.12 m w.e. of snowfall, 0.003 m w.e. of deposition and –2.18 m w.e. of melt. Net radiation contributes 74% of the melt energy. Compared to ablation measurements in the early 1970s, summer ablation was large. This increase is explained by a combination of a relatively higher net radiation, a lower albedo and larger turbulent heat fluxes that led to more energy being available for melting. No single meteorological variable can be isolated as being the principal reason for the high ablation, however. The lower ice albedo (0.19) is possibly due to ash deposits from forest fires.


2021 ◽  
pp. 1-19
Author(s):  
Rebecca L. Stewart ◽  
Matthew Westoby ◽  
Francesca Pellicciotti ◽  
Ann Rowan ◽  
Darrel Swift ◽  
...  

Abstract Surface energy-balance models are commonly used in conjunction with satellite thermal imagery to estimate supraglacial debris thickness. Removing the need for local meteorological data in the debris thickness estimation workflow could improve the versatility and spatiotemporal application of debris thickness estimation. We evaluate the use of regional reanalysis data to derive debris thickness for two mountain glaciers using a surface energy-balance model. Results forced using ERA-5 agree with AWS-derived estimates to within 0.01 ± 0.05 m for Miage Glacier, Italy, and 0.01 ± 0.02 m for Khumbu Glacier, Nepal. ERA-5 data were then used to estimate spatiotemporal changes in debris thickness over a ~20-year period for Miage Glacier, Khumbu Glacier and Haut Glacier d'Arolla, Switzerland. We observe significant increases in debris thickness at the terminus for Haut Glacier d'Arolla and at the margins of the expanding debris cover at all glaciers. While simulated debris thickness was underestimated compared to point measurements in areas of thick debris, our approach can reconstruct glacier-scale debris thickness distribution and its temporal evolution over multiple decades. We find significant changes in debris thickness over areas of thin debris, areas susceptible to high ablation rates, where current knowledge of debris evolution is limited.


2017 ◽  
Vol 21 (7) ◽  
pp. 3401-3415 ◽  
Author(s):  
Nobuhle P. Majozi ◽  
Chris M. Mannaerts ◽  
Abel Ramoelo ◽  
Renaud Mathieu ◽  
Alecia Nickless ◽  
...  

Abstract. Flux towers provide essential terrestrial climate, water, and radiation budget information needed for environmental monitoring and evaluation of climate change impacts on ecosystems and society in general. They are also intended for calibration and validation of satellite-based Earth observation and monitoring efforts, such as assessment of evapotranspiration from land and vegetation surfaces using surface energy balance approaches. In this paper, 15 years of Skukuza eddy covariance data, i.e. from 2000 to 2014, were analysed for surface energy balance closure (EBC) and partitioning. The surface energy balance closure was evaluated using the ordinary least squares regression (OLS) of turbulent energy fluxes (sensible (H) and latent heat (LE)) against available energy (net radiation (Rn) less soil heat (G)), and the energy balance ratio (EBR). Partitioning of the surface energy during the wet and dry seasons was also investigated, as well as how it is affected by atmospheric vapour pressure deficit (VPD), and net radiation. After filtering years with low-quality data (2004–2008), our results show an overall mean EBR of 0.93. Seasonal variations of EBR also showed the wet season with 1.17 and spring (1.02) being closest to unity, with the dry season (0.70) having the highest imbalance. Nocturnal surface energy closure was very low at 0.26, and this was linked to low friction velocity during night-time, with results showing an increase in closure with increase in friction velocity. The energy partition analysis showed that sensible heat flux is the dominant portion of net radiation, especially between March and October, followed by latent heat flux, and lastly the soil heat flux, and during the wet season where latent heat flux dominated sensible heat flux. An increase in net radiation was characterized by an increase in both LE and H, with LE showing a higher rate of increase than H in the wet season, and the reverse happening during the dry season. An increase in VPD is correlated with a decrease in LE and increase in H during the wet season, and an increase in both fluxes during the dry season.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 9 ◽  
Author(s):  
Dakang Wang ◽  
Yulin Zhan ◽  
Tao Yu ◽  
Yan Liu ◽  
Xiaomei Jin ◽  
...  

Using Surface Energy Balance System (SEBS) to estimate actual evapotranspiration (ET) on a regional scale generally uses gridded meteorological data by interpolating data from meteorological stations with mathematical interpolation. The heterogeneity of underlying surfaces cannot be effectively considered when interpolating meteorological station measurements to gridded data only by mathematical interpolation. This study aims to highlight the improvement of modeled meteorological data from the Weather Research and Forecasting (WRF) mesoscale numerical model which fully considers the heterogeneity of underlying surfaces over the data from mathematical interpolation method when providing accurate meteorological input for SEBS model. Meteorological data at 1 km resolution in the Hotan Oasis were simulated and then were put into SEBS model to estimate the daily actual ET. The accuracy of WRF simulation was evaluated through comparison with data collected at the meteorological station. Results found that the WRF-simulated wind speed, air temperature, relative humidity and surface pressure correlate well with the meteorological stations measurements (R2 are 0.628, 0.8242, 0.8089 and 0.8915, respectively). Comparison between ET calculated using the meteorological data simulated from the WRF (ETa-WRF) and meteorological data interpolated from measurements at met stations (ETa-STA) showed that ETa-WRF could better reflect the ET difference between different land cover, and capture the vegetation growing trend, especially in areas with sparse vegetation, where ETa-STA intends to overestimate. In addition, ETa-WRF has less noise in barren areas compared to ETa-STA. Our findings suggest that WRF can provide more reliable meteorological input for SEBS model than mathematical interpolation method.


2019 ◽  
Vol 13 (8) ◽  
pp. 2203-2219 ◽  
Author(s):  
Tobias Linhardt ◽  
Joseph S. Levy ◽  
Christoph K. Thomas

Abstract. The hydrologic cycle in the Antarctic McMurdo Dry Valleys (MDV) is mainly controlled by surface energy balance. Water tracks are channel-shaped high-moisture zones in the active layer of permafrost soils and are important solute and water pathways in the MDV. We evaluated the hypothesis that water tracks alter the surface energy balance in this dry, cold, and ice-sheet-free environment during summer warming and may therefore be an increasingly important hydrologic feature in the MDV in the face of landscape response to climate change. The surface energy balance was measured for one water track and two off-track reference locations in Taylor Valley over 26 d of the Antarctic summer of 2012–2013. Turbulent atmospheric fluxes of sensible heat and evaporation were observed using the eddy-covariance method in combination with flux footprint modeling, which was the first application of this technique in the MDV. Soil heat fluxes were analyzed by measuring the heat storage change in the thawed layer and approximating soil heat flux at ice table depth by surface energy balance residuals. For both water track and reference locations over 50 % of net radiation was transferred to sensible heat exchange, about 30 % to melting of the seasonally thawed layer, and the remainder to evaporation. The net energy flux in the thawed layer was zero. For the water track location, evaporation was increased by a factor of 3.0 relative to the reference locations, ground heat fluxes by 1.4, and net radiation by 1.1, while sensible heat fluxes were reduced down to 0.7. Expecting a positive snow and ground ice melt response to climate change in the MDV, we entertained a realistic climate change response scenario in which a doubling of the land cover fraction of water tracks increases the evaporation from soil surfaces in lower Taylor Valley in summer by 6 % to 0.36 mm d−1. Possible climate change pathways leading to this change in landscape are discussed. Considering our results, an expansion of water track area would make new soil habitats accessible, alter soil habitat suitability, and possibly increase biological activity in the MDV. In summary, we show that the surface energy balance of water tracks distinctly differs from that of the dominant dry soils in polar deserts. With an expected increase in area covered by water tracks, our findings have implications for hydrology and soil ecosystems across terrestrial Antarctica.


2011 ◽  
Vol 5 (1) ◽  
pp. 151-171 ◽  
Author(s):  
M. Langer ◽  
S. Westermann ◽  
S. Muster ◽  
K. Piel ◽  
J. Boike

Abstract. In this article, we present a study on the surface energy balance of a polygonal tundra landscape in northeast Siberia. The study was performed during half-year periods from April to September in each of 2007 and 2008. The surface energy balance is obtained from independent measurements of the net radiation, the turbulent heat fluxes, and the ground heat flux at several sites. Short-wave radiation is the dominant factor controlling the magnitude of all the other components of the surface energy balance during the entire observation period. About 50% of the available net radiation is consumed by the latent heat flux, while the sensible and the ground heat flux are each around 20 to 30%. The ground heat flux is mainly consumed by active layer thawing. About 60% of the energy storage in the ground is attributed to the phase change of soil water. The remainder is used for soil warming down to a depth of 15 m. In particular, the controlling factors for the surface energy partitioning are snow cover, cloud cover, and the temperature gradient in the soil. The thin snow cover melts within a few days, during which the equivalent of about 20% of the snow-water evaporates or sublimates. Surface temperature differences of the heterogeneous landscape indicate spatial variabilities of sensible and latent heat fluxes, which are verified by measurements. However, spatial differences in the partitioning between sensible and latent heat flux are only measured during conditions of high radiative forcing, which only occur occasionally.


2008 ◽  
Vol 2 (5) ◽  
pp. 873-916
Author(s):  
R. H. Giesen ◽  
L. M. Andreassen ◽  
M. R. van den Broeke ◽  
J. Oerlemans

Abstract. We compare 5 years of meteorological records from automatic weather stations (AWSs) on Storbreen and Midtdalsbreen, two glaciers in southern Norway, located approximately 120 km apart. The records are obtained from identical AWSs with an altitude difference of 130 m and cover the period September 2001 to September 2006. Air temperature at the AWS locations is found to be highly correlated, even with the seasonal cycle removed. The most striking difference between the two sites is the difference in wind climate. Midtdalsbreen is much more under influence of the large-scale circulation with wind speeds on average a factor 1.75 higher. On Storbreen, weaker katabatic winds are dominant. The main melt season is from May to September at both locations. During the melt season, incoming and net solar radiation are larger on Midtdalsbreen, whereas incoming and net longwave radiation are larger on Storbreen, primarily caused by thicker clouds on the latter. The turbulent fluxes are a factor 1.7 larger on Midtdalsbreen, mainly due to the higher wind speeds. Inter-daily fluctuations in the surface energy fluxes are very similar at the AWS sites. On average, melt energy is a factor 1.3 larger on Midtdalsbreen, a result of both larger net radiation and larger turbulent fluxes. The relative contribution of net radiation to surface melt is larger on Storbreen (76%) than on Midtdalsbreen (66%). As winter snow depth at the two locations is comparable in most years, the larger amount of melt energy results in an earlier disappearance of the snowpack on Midtdalsbreen and 70% more ice melt than on Storbreen. We compare the relative and absolute values of the energy fluxes on Storbreen and Midtdalsbreen with reported values for glaciers at similar latitudes. Furthermore, a comparison is made with meteorological variables measured at two nearby weather stations, showing that on-site measurements are essential for an accurate calculation of the surface energy balance and melt rate.


Sign in / Sign up

Export Citation Format

Share Document