scholarly journals Brief communication "The aerophotogrammetric map of Greenland ice masses"

2012 ◽  
Vol 6 (5) ◽  
pp. 3891-3902 ◽  
Author(s):  
M. Citterio ◽  
A. P. Ahlstrøm

Abstract. The PROMICE (Programme for Monitoring of the Greenland Ice Sheet) aerophotogrammetric map of Greenland ice masses is the first high resolution dataset documenting the mid-1980's extent of the Greenland Ice Sheet and all the local glaciers and ice caps. The total glacierized area was 1 804 638 km2 ± 2178 km2, of which 88 083 ± 1240 km2 belonged to local glaciers and ice caps (GIC) substantially independent from the Greenland Ice Sheet. This new result of GIC glacierized area is higher than most previous estimates, and is in line with contemporary findings based on independent data sources. Comparison between our map and the recently released GIMP (Greenland Mapping Project) Ice Cover Mask (Howat and Negrete, 2012) show potential for change assessment studies.

2013 ◽  
Vol 7 (2) ◽  
pp. 445-449 ◽  
Author(s):  
M. Citterio ◽  
A. P. Ahlstrøm

Abstract. The PROMICE (Programme for Monitoring of the Greenland Ice Sheet) aerophotogrammetric map of Greenland ice masses is the first high resolution dataset documenting the mid-1980s areal extent of the Greenland Ice Sheet and all the local glaciers and ice caps. The total glacierized area excluding nunataks was 1 804 638 km2 ± 2178 km2, of which 88 083 ± 1240 km2 belonged to local glaciers and ice caps (GIC) substantially independent from the Greenland Ice Sheet. This new result of GIC glacierized area is higher than most previous estimates, 81% greater than Weng's (1995) measurements, but is in line with contemporary findings based on independent data sources. A comparison between our map and the recently released Rastner et al. (2012) inventory and GIMP (Greenland Ice Mapping Project) Ice-Cover Mask (Howat and Negrete, 2013) shows potential for change-assessment studies.


2021 ◽  
Author(s):  
Marion Devilliers ◽  
Didier Swingedouw ◽  
Juliette Mignot ◽  
Julie Deshayes ◽  
Gilles Garric ◽  
...  

2013 ◽  
Vol 7 (6) ◽  
pp. 1901-1914 ◽  
Author(s):  
W. Colgan ◽  
S. Luthcke ◽  
W. Abdalati ◽  
M. Citterio

Abstract. We use a Monte Carlo approach to invert a spherical harmonic representation of cryosphere-attributed mass change in order to infer the most likely underlying mass changes within irregularly shaped ice-covered areas at nominal 26 km resolution. By inverting a spherical harmonic representation through the incorporation of additional fractional ice coverage information, this approach seeks to eliminate signal leakage between non-ice-covered and ice-covered areas. The spherical harmonic representation suggests a Greenland mass loss of 251 ± 25 Gt a−1 over the December 2003 to December 2010 period. The inversion suggests 218 ± 20 Gt a−1 was due to the ice sheet proper, and 34 ± 5 Gt a−1 (or ~14%) was due to Greenland peripheral glaciers and ice caps (GrPGICs). This mass loss from GrPGICs exceeds that inferred from all ice masses on both Ellesmere and Devon islands combined. This partition therefore highlights that GRACE-derived "Greenland" mass loss cannot be taken as synonymous with "Greenland ice sheet" mass loss when making comparisons with estimates of ice sheet mass balance derived from techniques that sample only the ice sheet proper.


Author(s):  
Michele Citterio ◽  
Dirk Van As ◽  
Andreas P. Ahlstrøm ◽  
Morten L. Andersen ◽  
Signe B. Andersen ◽  
...  

Since the early 1980s, the Geological Survey of Denmark and Greenland (GEUS) glaciology group has developed automatic weather stations (AWSs) and operated them on the Greenland ice sheet and on local glaciers to support glaciological research and monitoring projects (e.g. Olesen & Braithwaite 1989; Ahlstrøm et al. 2008). GEUS has also operated AWSs in connection with consultancy services in relation to mining and hydropower pre-feasibility studies (Colgan et al. 2015). Over the years, the design of the AWS has evolved, partly due to technological advances and partly due to lessons learned in the fi eld. At the same time, we have kept the initial goal in focus: long-term, year-round accurate recording of ice ablation, snow depth and the physical parameters that determine the energy budget of glacierised surfaces. GEUS has an extensive record operating AWSs in the harsh Arctic environment of the diverse ablation areas of the Greenland ice sheet, glaciers and ice caps (Fig. 1). Th e current GEUS-type AWS (Fig. 2) records meteorological, surface and sub-surface variables, including accumulation and ablation, as well as for example ice velocity. A large part of the data is transmitted by satellite near real-time to support ongoing applications, fi eld activities and the planning of maintenance visits. Th e data have been essential for assessing the impact of climate change on land ice. Th e data are also crucial for calibration and validation of satellite-based observations and climate models (van As et al. 2014).


2021 ◽  
Author(s):  
Ruth Mottram ◽  
Oskar Landgren ◽  
Rasmus Anker Pedersen ◽  
Kristian Pagh Nielsen ◽  
Ole Bøssing Christensen ◽  
...  

<p>The development of the HARMONIE model system has led to huge advances in numerical weather prediction, including over Greenland where a numerical weather prediction (NWP) model is used to forecast daily surface mass budget over the Greenland ice sheet as presented on polarportal.dk. The new high resolution Copernicus Arctic Reanalysis further developed the possibilities in HARMONIE with full 3DVar data assimilation and extended use of quality-controlled local observations. Here, we discuss the development and current status of the climate version of the HARMONIE Climate model (HCLIM). The HCLIM system has opened up the possibility for flexible use of the model at a range of spatial scales using different physical schemes including HARMONIE-AROME, ALADIN and ALARO for different spatial and temporal resolutions and assimilating observations, including satellite data on sea ice concentration from ESA CCI+, to improve hindcasts. However, the range of possibilities means that documenting the effects of different physics and parameterisation schemes is important before widespread application. </p><p>Here, we focus on HCLIM performance over the Greenland ice sheet, using observations to verify the different plausible set-ups and investigate biases in climate model outputs that affect the surface mass budget (SMB) of the Greenland ice sheet. </p><p>The recently funded Horizon 2020 project PolarRES will use the HCLIM model for very high resolution regional downscaling, together with other regional climate models in both Arctic and Antarctic regions, and our analysis thus helps to optimise the use of HCLIM in the polar regions for different modelling purposes.</p>


2016 ◽  
Vol 10 (5) ◽  
pp. 2361-2377 ◽  
Author(s):  
Brice Noël ◽  
Willem Jan van de Berg ◽  
Horst Machguth ◽  
Stef Lhermitte ◽  
Ian Howat ◽  
...  

Abstract. This study presents a data set of daily, 1 km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958–2015. Applying corrections for elevation, bare ice albedo and accumulation bias, the high-resolution product is statistically downscaled from the native daily output of the polar regional climate model RACMO2.3 at 11 km. The data set includes all individual SMB components projected to a down-sampled version of the Greenland Ice Mapping Project (GIMP) digital elevation model and ice mask. The 1 km mask better resolves narrow ablation zones, valley glaciers, fjords and disconnected ice caps. Relative to the 11 km product, the more detailed representation of isolated glaciated areas leads to increased precipitation over the southeastern GrIS. In addition, the downscaled product shows a significant increase in runoff owing to better resolved low-lying marginal glaciated regions. The combined corrections for elevation and bare ice albedo markedly improve model agreement with a newly compiled data set of ablation measurements.


1984 ◽  
Vol 5 ◽  
pp. 115-121 ◽  
Author(s):  
N. Reeh

A three-dimensional perfectly plastic ice-sheet model, developed for determining the surface elevations and the flow pattern of an ice sheet with given bottom topography and ice-margin positions, is applied to the reconstruction of the glacial ice covers of Greenland and the Canadian Arctic islands. In the northern regions, two different reconstructions have been performed with ice margins along the present 600 and 200 m sea-depth contours, respectively. In central Greenland, the ice margin is considered to be at the outermost ice-margin deposits on the coastal shelf to the west, and at the present 200 m sea-depth contour to the east.The main conclusions to be drawn from the reconstructions are: (1). The flow pattern of the glacial ice cover of Greenland shows a great resemblance to the present one, the central ice divide being displaced less than 50 km from its present position and being no more than 200 m higher than today. (2). The main ice divide of the ice sheet covering the Canadian Arctic islands (the Innuitian ice sheet) was located over the highlands of eastern Ellesmere Island with local domes positioned over the present ice caps, indicating that even the deep ice of Wisconsin age in these ice caps is of local origin. This is also the case for the Devon Island ice cap. (3). Even in the not very likely case of a rather extensive glacial ice cover in north-west Greenland, the ice-flow pattern upstream of the Camp Century deep drill site would not have changed radically compared to the present flow pattern. Thus it is concluded that even advanced ice margins in late-Wisconsin time could at most have resulted in an elevation of the deposition site of the late-Wisconsin ice at Camp Century 600 m higher than at present. The consequences of this conclusion are discussed.


2019 ◽  
Vol 11 (2) ◽  
pp. 131 ◽  
Author(s):  
Lu An ◽  
Eric Rignot ◽  
Romain Millan ◽  
Kirsty Tinto ◽  
Josh Willis

Marine-terminating glaciers dominate the evolution of the Greenland Ice Sheet (GrIS) and its contribution to sea-level rise. Widespread glacier acceleration has been linked to the warming of ocean waters around the periphery of Greenland but a lack of information on the bathymetry of the continental shelf and glacial fjords has limited our ability to understand how subsurface, warm, salty ocean waters of Atlantic origin (AW) reach the glaciers and melt them from below. Here, we employ high-resolution, airborne gravity data (AIRGrav) in combination with multibeam echo sounding (MBES) data, to infer the bathymetry of the coastal areas of Northwest Greenland for NASA’s Ocean Melting Greenland (OMG) mission. High-resolution, AIRGrav data acquired on a 2 km spacing, 150 m ground clearance, with 1.5 mGal crossover error, is inverted in three dimensions to map the bathymetry. To constrain the inversion away from MBES data, we compare two methods: one based on the Direct Current (DC) shift of the gravity field (absolute minus observed gravity) and another based on the density of the bedrock. We evaluate and compare the two methods in areas with complete MBES coverage. We find the lowest standard error in bed elevation (±60 m) using the DC shift method. When applied to the entire coast of Northwest Greenland, the three-dimensional inversion reveals a complex network of connected sea bed channels, not known previously, that provide natural and varied pathways for AW to reach the glaciers across the continental shelf. The study demonstrates that the gravity approach offers an efficient and practical alternative to extensive ship mapping in ice-filled waters to obtain information critical to understanding and modeling ice-ocean interaction along ice sheet margins.


2017 ◽  
Vol 51 (21) ◽  
pp. 12518-12527 ◽  
Author(s):  
Alexander D. Beaton ◽  
Jemma L. Wadham ◽  
Jon Hawkings ◽  
Elizabeth A. Bagshaw ◽  
Guillaume Lamarche-Gagnon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document