scholarly journals Salt tolerance's toll: prolonged exposure to saline water inflicts damage to the blood cells of dice snakes (<i>Natrix tessellata</i>)

Web Ecology ◽  
2017 ◽  
Vol 17 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Vanya Koleva ◽  
Yurii Kornilev ◽  
Ivan Telenchev ◽  
Simeon Lukanov ◽  
Berna Hristova ◽  
...  

Abstract. Dice snakes (Natrix tessellata, Laurenti, 1768) inhabit oligohaline and brackish waters along the Bulgarian Black Sea coast, where they often forage at sea. Under these conditions, this species should tolerate highly variable blood plasma sodium concentrations for extended time periods, but the effect of high sodium concentrations to blood cell morphology and physiology is largely unknown. In this experiment, we placed adult dice snakes in waters with different salinity for 84 h, representing the three typical saline concentrations in which dice snakes live and forage: 0.2 ‰ NaCl, fresh water, 16 ‰ NaCl, Black Sea water and 36 ‰ NaCl, World Ocean water. We collected blood through cardiocentesis after exposure to each treatment and used Giemsa's solution for staining the formed elements. We registered numerous nuclear abnormalities (nuclear buds, lobes and blebs) in the blood cells of all investigated specimens. In the snakes placed in the waters with high saline concentration (16 and 36 ‰ NaCl) we found numerous cells with ruptured membranes. These snakes also showed increased mitochondrial activity compared to those in fresh water (1.85 and 2.53 times higher, respectively). Our data suggest that even though dice snakes show a remarkable tolerance to waters with increased salinity, prolonged exposure to it induces significant physiological stress in N. tessellata, which poses a clear limit for their ability to stay in the sea for a long time.

1973 ◽  
Vol 51 (7) ◽  
pp. 687-695 ◽  
Author(s):  
W. Craig Clarke

The prolactin band was identified after disc electrophoresis of pituitaries from Tilapia mossambica and Cichlasoma labiatum. Electrophoresis coupled with a densitometric procedure was validated as a means of measuring the prolactin content of Tilapia pituitaries during salinity transfer experiments. Transfer of T. mossambica from seawater or 33% sea water to fresh water was followed by a sharp decline in both plasma sodium and pituitary prolactin levels. One week after transfer, there was a recovery of sodium levels to normal, although pituitary prolactin concentrations had not yet reached the level found in fully acclimated freshwater fish. Pituitary prolactin levels in T. grahami were reduced by more than 50% on the day after transfer from Lake Magadi (alkaline–saline) water to fresh water. No such depletion of pituitary prolactin followed a transfer from 100% seawater or from fresh water to 33% seawater, indicating that this response is specifically linked to the secretion of prolactin for osmoregulation in fresh water. The molecular weight of Tilapia prolactin was estimated at 17 000 by means of electrophoresis in sodium dodecyl sulfate.


Author(s):  
Olga Mashukova ◽  
Olga Mashukova ◽  
Yuriy Tokarev ◽  
Yuriy Tokarev ◽  
Nadejda Kopytina ◽  
...  

We studied for the first time luminescence characteristics of the some micromycetes, isolated from the bottom sediments of the Black sea from the 27 m depth. Luminescence parameters were registered at laboratory complex “Svet” using mechanical and chemical stimulations. Fungi cultures of genera Acremonium, Aspergillus, Penicillium were isolated on ChDA medium which served as control. Culture of Penicillium commune gave no light emission with any kind of stimulation. Culture of Acremonium sp. has shown luminescence in the blue – green field of spectrum. Using chemical stimulation by fresh water we registered signals with luminescence energy (to 3.24 ± 0.11)•108 quantum•cm2 and duration up to 4.42 s, which 3 times exceeded analogous magnitudes in a group, stimulated by sea water (p < 0.05). Under chemical stimulation by ethyl alcohol fungi culture luminescence was not observed. Culture of Aspergillus fumigatus possessed the most expressed properties of luminescence. Stimulation by fresh water culture emission with energy of (3.35 ± 0.11)•108 quantum•cm2 and duration up to 4.96 s. Action of ethyl alcohol to culture also stimulated signals, but intensity of light emission was 3–4 times lower than under mechanical stimulation. For sure the given studies will permit not only to evaluate contribution of marine fungi into general bioluminescence of the sea, but as well to determine places of accumulation of opportunistic species in the sea.


2002 ◽  
Vol 3 (1) ◽  
pp. 5 ◽  
Author(s):  
V. ZERVAKIS ◽  
D. GEORGOPOULOS

The combination of two research projects offered us the opportunity to perform a comprehensive study of the seasonal evolution of the hydrological structure and the circulation of the North Aegean Sea, at the northern extremes of the eastern Mediterranean. The combination of brackish water inflow from the Dardanelles and the sea-bottom relief dictate the significant differences between the North and South Aegean water columns. The relatively warm and highly saline South Aegean waters enter the North Aegean through the dominant cyclonic circulation of the basin. In the North Aegean, three layers of distinct water masses of very different properties are observed: The 20-50 m thick surface layer is occupied mainly by Black Sea Water, modified on its way through the Bosphorus, the Sea of Marmara and the Dardanelles. Below the surface layer there is warm and highly saline water originating in the South Aegean and the Levantine, extending down to 350-400 m depth. Below this layer, the deeper-than-400 m basins of the North Aegean contain locally formed, very dense water with different θ /S characteristics at each subbasin. The circulation is characterised by a series of permanent, semi-permanent and transient mesoscale features, overlaid on the general slow cyclonic circulation of the Aegean. The mesoscale activity, while not necessarily important in enhancing isopycnal mixing in the region, in combination with the very high stratification of the upper layers, however, increases the residence time of the water of the upper layers in the general area of the North Aegean. As a result, water having out-flowed from the Black Sea in the winter, forms a separate distinct layer in the region in spring (lying between “younger” BSW and the Levantine origin water), and is still traceable in the water column in late summer.


1973 ◽  
Vol 58 (1) ◽  
pp. 105-121
Author(s):  
R. KIRSCH ◽  
N. MAYER-GOSTAN

Using isotopic procedures, the drinking rate and chloride exchanges were studied in the eel Anguilla anguilla during transfer from fresh water to sea water. 1. Following transfer to sea water there is a threefold increase of the drinking rate (lasting about 1 h). Then it falls to a minimum after 12-16 h and rises again to a maximum level about the seventh day after the transfer. Then a gradual reduction leads to a steady value which is not significantly different from the one observed in fresh water. 2. The changes with time of the plasma sodium and chloride concentrations are given. Their kinetics are not completely alike. 3. The chloride outflux increases 40-fold on transfer of the eel to sea water, but even so it is very low. After the sixth hour in sea water there is a progressive increase in the flux, so that on the fourth day it is higher (500 µ-equiv. h-1.100 g-1) than in the seawater-adapted animals (230 µ-equiv.h-1.100 g-1). 4. Drinking rate values in adapted animals are discussed in relation to the external medium. The kinetics of the drinking rate together with variations in body weights after freshwater-seawater transfer are discussed in relation to the possible stimulus of the drinking reflex. 5. Chloride fluxes (outflux, net flux, digestive entry) are compared and lead one to assume that in seawater-adapted fish one-third of the chloride influx enters via the gut and two-thirds via the gills.


1977 ◽  
Vol 55 (1) ◽  
pp. 183-198 ◽  
Author(s):  
Yoshitaka Nagahama ◽  
W. Craig Clarke ◽  
W. S. Hoar

Six different types of secretory cells were identified by light and electron microscopy in the adenohypophyseal pars distalis of yearling coho salmon acclimated to fresh or salt water. Prolactin cells are markedly more active in the freshwater than the seawater fish; these cells exhibit definite functional activity 3 days after transfer from salt to fresh water, indicating an osmoregulatory role of prolactin in the freshwater environment. Plasma sodium showed a significant decline 6 h after transfer from sea water to fresh water and, even after 1 week, remained lower than in the fully acclimated freshwater fish. Corticotropic (ACTH) cells did not appear cytologically different in freshwater and seawater fish. GH cells, the most prominent cells in the proximal pars distalis, appear more numerous and more granulated in the seawater fish, suggesting an osmoregulatory involvement in young coho salmon. Putative thyrotropic (TSH) and putative gonadotropic cells (GTH) can be distinguished by differences in granulation; only one type of GTH cell is evident with ultrastructural features that differ from those of sexually mature salmon. Stellate, non-granulated cells occur in all regions of the adenohypophysis but more frequently in the prolactin follicles; they are much more prominent in the seawater than freshwater fish.


1975 ◽  
Vol 32 (10) ◽  
pp. 1813-1819 ◽  
Author(s):  
H. M. Shaw ◽  
R. L. Saunders ◽  
H. C. Hall ◽  
E. B. Henderson

Growth and food conversion efficiency in Atlantic salmon smolts (Salmo salar) in either fresh water or sea water were not demonstrably affected by varying the level of dietary sodium chloride. Large dietary salt loads were almost completely absorbed from the gastrointestinal tracts offish within 24 h, and plasma sodium and chloride concentrations were positively affected at this time.Irrespective of whether fish were undergoing random, spontaneous activity or an enforced, uniform low level of activity, growth rates and food conversion efficiencies were similar when fish were fed the same ration but different amounts of sodium chloride.A possible explanation is that normal renal function in fresh water provides for large amounts of hypoosmotic urine in which excess sodium chloride may be discharged without great expenditure of energy. However, in sea water, where urine flow is minimal, the main route of excretion for the excess electrolytes is across the gills, a process requiring energy.


Author(s):  
M. Yudelman

The world’s supply of water is fixed. It is estimated that 97% of the world’s water exists in the oceans, 2.2% exists as ice and snow, mostly in the polar regions, and only about 0.7% of the total supply is the freshwater that sustains mankind, including the global agricultural system. This quantity of freshwater — around 40,500 km3 — which is the difference between precipitation and evapotranspiration, is continuously replenished by nature’s hydrological cycle. Most climatologists and hydrologists agree that there is no natural process short of climate change, especially global warming, that can increase the world’s rainfall and so the supply of freshwater. The greater the warming, the larger the expected increase in precipitation. One “simple level of analysis” suggests that global warming of 30° C could well lead to a 10% increase in evaporation and an average increase in precipitation of 10%. The biggest increases would be at high latitudes, smaller increases would occur close to the equator (Gleick, 1992). The weight of evidence suggests that this is unlikely to happen within the next several decades (Rosenzweig, 1994). It is an open question, though, as to what might happen in the second half of the next century. There are some manmade processes that can increase the supply of fresh water. One of the most important of these is the conversion of saline water from the ocean into fresh water by removing salt through desalinization or by filtration. Thus far, however, the processes that have been developed are highly energy intensive and costly; the plants presently in operation are mostly in the oil-rich, water-poor nations of the Persian Gulf. It is estimated that there are more than 11,000 desalting plants operating worldwide, but together they produce less than 0.2% of the world’s total fresh water (Postel, 1991). The costs of desalting sea water range currently from about $0.80 to $1.60 m-3, and costs of treating brackish water are about $0.30 m -3, well above the costs of fresh water used for irrigation (Wolf, 1996).


Author(s):  
Olga Mashukova ◽  
Olga Mashukova ◽  
Yuriy Tokarev ◽  
Yuriy Tokarev ◽  
Nadejda Kopytina ◽  
...  

We studied for the first time luminescence characteristics of the some micromycetes, isolated from the bottom sediments of the Black sea from the 27 m depth. Luminescence parameters were registered at laboratory complex “Svet” using mechanical and chemical stimulations. Fungi cultures of genera Acremonium, Aspergillus, Penicillium were isolated on ChDA medium which served as control. Culture of Penicillium commune gave no light emission with any kind of stimulation. Culture of Acremonium sp. has shown luminescence in the blue – green field of spectrum. Using chemical stimulation by fresh water we registered signals with luminescence energy (to 3.24 ± 0.11)•108 quantum•cm2 and duration up to 4.42 s, which 3 times exceeded analogous magnitudes in a group, stimulated by sea water (p < 0.05). Under chemical stimulation by ethyl alcohol fungi culture luminescence was not observed. Culture of Aspergillus fumigatus possessed the most expressed properties of luminescence. Stimulation by fresh water culture emission with energy of (3.35 ± 0.11)•108 quantum•cm2 and duration up to 4.96 s. Action of ethyl alcohol to culture also stimulated signals, but intensity of light emission was 3–4 times lower than under mechanical stimulation. For sure the given studies will permit not only to evaluate contribution of marine fungi into general bioluminescence of the sea, but as well to determine places of accumulation of opportunistic species in the sea.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2120 ◽  
Author(s):  
Van Lam ◽  
Van Hoan ◽  
Duc Nhan

Groundwater in the Red River’s delta plain, North Vietnam, was found in Holocene, Pleistocene, Neogene and Triassic aquifers in fresh, brackish and saline types with a total dissolved solids (TDS) content ranging from less than 1 g L−1 to higher than 3 g L−1. Saline water exists inHolocene aquifer, but fresh and brackish water exist in Pleistocene, Neogene and Triassic aquifers. This study aims at the investigation into genesis and processes controlling quality of water resources in the region. For this isotopic, combined with geochemical techniques were applied. The techniques include: (i) measurement of water’s isotopic compositions (δ2H, δ18O) in water; (ii) determination of water’s age by the 3H- and 14C-dating method, and (iii) chemical analyses for main cations and anions in water. Results obtained revealed that saline water in Holocene aquifer was affected by seawater intrusion, fresh water in deeper aquifers originated from meteoric water but with old ages, up to 10,000–14,000 yr. The recharge area of fresh water is from the northwest highland at an altitude of 140–160m above sea level. The recharge water flows northwesterly towards southeasterly to the seacoast at a rate of 2.5m y−1. Chemistry of water resources in the study region is controlled by ferric, sulfate and nitrate reduction with organic matters as well as dissolution of inorganic carbonate minerals present in the sediment deposits. Results of isotopic signatures in water from Neogene, Triassic and Pleistocene aquifers suggested the three aquifers are connected to each other due to the existence of faults and fissures in Mesozoic basement across the delta region in combination with high rate of groundwater mining. Moreover, the high rate of freshwater abstraction from Pleistocene aquifer currently causes sea water to flow backwards to production well field located in the center of the region.


1959 ◽  
Vol 37 (5) ◽  
pp. 729-748 ◽  
Author(s):  
Arthur Hillier Houston

Steelhead trout transferred from fresh water into sea water exhibited two distinct phases in osmoregulatory adaptation. The first, or adjustive phase, was distinguished by marked departures from fresh-water levels and distributions of water and electrolytes. Increases in muscle chloride space indicated transfer of fluids from cells into the extracellular compartment. Plasma levels of water, chloride, sodium, and potassium rose, while that of calcium remained relatively constant. The ratio of plasma sodium to chloride fell sharply suggesting a condition of acidosis. Cellular calcium concentrations rose markedly, while smaller increases were seen in chloride and potassium levels. Changes in calcium appeared to be a function of both cellular dehydration and electrolyte uptake. Changes in cellular potassium concentrations were related primarily to dehydration since tissue levels of this ion fell slightly in sea water. The roles of active electrolyte excretory processes, and the passive withdrawal of ions from the circulating fluids by complex formation, have been considered as osmoregulatory mechanisms leading to the establishment of the second, or regulative, phase of adaptation to sea water.


Sign in / Sign up

Export Citation Format

Share Document