PLANETARY UPPER-LEVEL FRONTAL ZONE IN THE EURO-ATLANTIC SECTOR IN SUMMER DURING 1990-2019

2021 ◽  
pp. 24-33
Author(s):  
E. A. Durneva ◽  
◽  
O. G. Chkhetiani ◽  
◽  
◽  
...  

The analysis of monthly mean locations of the planetary upper-level frontal zone in the Euro-Atlantic sector in summer during 1990-2019 is presented. Specific positions for the summer months (June, July, and August) are noted and maximum northward displacements from the climatological normal for 1961-1990 are found in the years with the formation of the atmospheric blocking. The values of standard deviations of the displacements relative to the normal position were calculated for the summer period of each year both for the North Atlantic, Europe, and the European part of Russia and for the Euro-Atlantic sector. On the basis of linear regression, a tendency is revealed toward an increase in the meridional displacements of the planetary upper-level frontal zone over the recent thirty years and toward the occurrence of maximum deviations over the last decade.

2007 ◽  
Vol 20 (12) ◽  
pp. 2721-2744 ◽  
Author(s):  
Peter G. Baines ◽  
Chris K. Folland

Abstract It is shown that a number of important characteristics of the global atmospheric circulation and climate changed in a near-monotonic fashion over the decade, or less, centered on the late 1960s. These changes were largest or commonest in tropical regions, the Southern Hemisphere, and the Atlantic sector of the Northern Hemisphere. Some, such as the decrease in rainfall in the African Sahel, are well known. Others appear to be new, but their combined extent is global and dynamical linkages between them are evident. The list of affected variables includes patterns of SST; tropical rainfall in the African Sahel and Sudan, the Amazon basin, and northeast Brazil; pressure and SST in the tropical North Atlantic and the west and central Pacific; various branches of the southern Hadley circulation and the southern subtropical jet stream; the summer North Atlantic Oscillation; south Greenland temperature; the Southern Hemisphere storm track; and, quite likely, the Antarctic sea ice boundary. These changes are often strongest in the June–August season; changes are also seen in December–February but are generally smaller. In Greenland, annual mean temperature seems to be affected strongly, reflecting similar changes in SST throughout the year in the higher latitudes of the North Atlantic. Possible causes for these coordinated changes are briefly evaluated. The most likely candidates appear to be a likely reduction in the northward oceanic heat flux associated with the North Atlantic thermohaline circulation in the 1950s to 1970s, which was nearly in phase with a rapid increase in anthropogenic aerosol emissions during the 1950s and 1960s, particularly over Europe and North America.


Author(s):  
Courtney Quinn ◽  
Dylan Harries ◽  
Terence J. O’Kane

AbstractThe dynamics of the North Atlantic Oscillation (NAO) are analyzed through a data-driven model obtained from atmospheric reanalysis data. We apply a regularized vector autoregressive clustering technique to identify recurrent and persistent states of atmospheric circulation patterns in the North Atlantic sector (110°W-0°E, 20°N-90°N). In order to analyze the dynamics associated with the resulting cluster-based models, we define a time-dependent linear delayed map with a switching sequence set a priori by the cluster affiliations at each time step. Using a method for computing the covariant Lyapunov vectors (CLVs) over various time windows, we produce sets of mixed singular vectors (for short windows) and approximate the asymptotic CLVs (for longer windows). The growth rates and alignment of the resulting time-dependent vectors are then analyzed. We find that the window chosen to compute the vectors acts as a filter on the dynamics. For short windows, the alignment and changes in growth rates are indicative of individual transitions between persistent states. For long windows, we observe an emergent annual signal manifest in the alignment of the CLVs characteristic of the observed seasonality in the NAO index. Analysis of the average finite-time dimension reveals the NAO− as the most unstable state relative to the NAO+, with persistent AR states largely stable. Our results agree with other recent theoretical and empirical studies that have shown blocking events to have less predictability than periods of enhanced zonal flow.


Ocean Science ◽  
2011 ◽  
Vol 7 (3) ◽  
pp. 389-404 ◽  
Author(s):  
I. Medhaug ◽  
T. Furevik

Abstract. Output from a total of 24 state-of-the-art Atmosphere-Ocean General Circulation Models is analyzed. The models were integrated with observed forcing for the period 1850–2000 as part of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. All models show enhanced variability at multi-decadal time scales in the North Atlantic sector similar to the observations, but with a large intermodel spread in amplitudes and frequencies for both the Atlantic Multidecadal Oscillation (AMO) and the Atlantic Meridional Overturning Circulation (AMOC). The models, in general, are able to reproduce the observed geographical patterns of warm and cold episodes, but not the phasing such as the early warming (1930s–1950s) and the following colder period (1960s–1980s). This indicates that the observed 20th century extreme in temperatures are due to primarily a fortuitous phasing of intrinsic climate variability and not dominated by external forcing. Most models show a realistic structure in the overturning circulation, where more than half of the available models have a mean overturning transport within the observed estimated range of 13–24 Sverdrup. Associated with a stronger than normal AMOC, the surface temperature is increased and the sea ice extent slightly reduced in the North Atlantic. Individual models show potential for decadal prediction based on the relationship between the AMO and AMOC, but the models strongly disagree both in phasing and strength of the covariability. This makes it difficult to identify common mechanisms and to assess the applicability for predictions.


2007 ◽  
Vol 135 (12) ◽  
pp. 3927-3949 ◽  
Author(s):  
Ron McTaggart-Cowan ◽  
Lance F. Bosart ◽  
John R. Gyakum ◽  
Eyad H. Atallah

Abstract The landfall of Hurricane Katrina (2005) near New Orleans, Louisiana, on 29 August 2005 will be remembered as one of the worst natural disasters in the history of the United States. By comparison, the extratropical transition (ET) of the system as it accelerates poleward over the following days is innocuous and the system weakens until its eventual demise off the coast of Greenland. The extent of Katrina’s perturbation of the midlatitude flow would appear to be limited given the lack of reintensification or downstream development during ET. However, the slow progression of a strong upper-tropospheric warm pool across the North Atlantic Ocean in the week following Katrina’s landfall prompts the question of whether even a nonreintensifying ET event can lead to significant modification of the midlatitude flow. Analysis of Hurricane Katrina’s outflow layer after landfall suggests that it does not itself make up the long-lived midlatitude warm pool. However, the interaction between Katrina’s anticyclonic outflow and an approaching baroclinic trough is shown to establish an anomalous southwesterly conduit or “freeway” that injects a preexisting tropospheric warm pool over the southwestern United States into the midlatitudes. This warm pool reduces predictability in medium-range forecasts over the North Atlantic and Europe while simultaneously aiding in the development of Hurricanes Maria and Nate. The origin of the warm pool is shown to be the combination of anticyclonic upper-level features generated by eastern Pacific Hurricane Hilary and the south Asian anticyclone (SAA). The hemispheric nature of the connections involved with the development of the warm pool and its injection into the extratropics has an impact on forecasting, since the predictability issue associated with ET in this case involves far more than the potential reintensification of the transitioning system itself.


2019 ◽  
Vol 32 (22) ◽  
pp. 7857-7870 ◽  
Author(s):  
Xin Tan ◽  
Ming Bao ◽  
Xuejuan Ren

Abstract The Western Hemisphere (WH) circulation pattern, identified by self-organizing maps cluster analysis, is a low-frequency atmospheric regime that influences the fluctuations of large-scale circulation over the North Pacific–North American–North Atlantic areas. The reanalysis datasets from ECMWF are used to estimate the energetics of the WH pattern in this study. The composite results based on monthly WH events reveal that the kinetic energy (KE) associated with the WH pattern is maintained through the barotropic conversion from the climatological-mean westerlies, mainly in the Atlantic jet exit regions. The KE could also be gained through the barotropic feedback forcing from transient eddies. The corresponding baroclinic conversion of available potential energy (APE) from the climatological-mean state, which contributes most efficiently to the energy maintenance of the WH pattern, is obvious in the middle and lower troposphere, owing to the thermal contrast of the colder continent and warmer ocean over the North America–North Atlantic sector. The baroclinic conversion associated with the heat flux on the climatological temperature gradient is consistent with the southwestward-tilting height anomalies from 850 to 500 hPa. The baroclinic feedback from transient eddies contributes negatively to the energy conversion and destroys the maintenance of the WH pattern.


2012 ◽  
Vol 25 (21) ◽  
pp. 7328-7340 ◽  
Author(s):  
Jenni L. Evans ◽  
Aviva Braun

A 50-yr climatology (1957–2007) of subtropical cyclones (STs) in the South Atlantic is developed and analyzed. A subtropical cyclone is a hybrid structure (upper-level cold core and lower-level warm core) with associated surface gale-force winds. The tendency for warm season development of North Atlantic STs has resulted in these systems being confused as tropical cyclones (TCs). In fact, North Atlantic STs are a regular source of the incipient vortices leading to North Atlantic TC genesis. In 2004, Hurricane Catarina developed in the South Atlantic and made landfall in Brazil. A TC system had been previously unobserved in the South Atlantic, so the incidence of Catarina highlighted the lack of an ST climatology for the region to provide a context for the likelihood of future systems. Sixty-three South Atlantic STs are documented over the 50-yr period analyzed in this climatology. In contrast to the North Atlantic, South Atlantic STs occur relatively uniformly throughout the year; however, their preferred location of genesis and mechanisms for this genesis do exhibit some seasonal variability. Rossby wave breaking was identified as the mechanism for the ST vortex initiation for North Atlantic STs. A subset of South Atlantic STs forms via this mechanism, however, an additional mechanism for ST genesis is identified here: lee cyclogenesis downstream of the Andes in the Brazil Current region—an area favorable for convection. This formation mechanism is similar to development of type-2 east coast lows in the Tasman Sea off eastern Australia.


Sign in / Sign up

Export Citation Format

Share Document