scholarly journals MACHINE LEARNING IN THE PROBLEM OF FORECASTING THE TIME SERIES OF MUF OF SHORT-WAVE RADIO CHANNELS

2021 ◽  
Vol 7 (8(62)) ◽  
pp. 29-31
Author(s):  
NIKITA ALEXANDROVICH KONKIN ◽  
ANASTASIA DMITRIEVNA PASOVA

The article is devoted to the creation of an algorithm for long-term prediction of the values of the MPR. The paper analyzes the influence of various methods of processing raw values of the maximum applicable frequency on the results of machine learning algorithms, such as linear regression and XGBoost. As processing techniques, the Savitsky -Goley filtration method and the isolated forest algorithm were used to determine emissions for the daily course of the MPR.

Author(s):  
Michael Charnine ◽  
Alexey Tishchenko ◽  
Leon Kochiev

This paper presents the results of a method for the visualization of the long-term prediction of research trending topics. Meaningful topics were identified among the words included in the titles of scientific articles. The title is the most important element of a scientific article and the main indication of the article’s subject and topic. We treated the titles’ words, which occur several times in articles cited in the analyzed collection, as the research trending topics. The longevity of the citation trend growth was the target for the machine learning algorithms. The CatBoost machine learning method, which is one of the best implementations of decision trees, was used. We conducted experiments on a scientific dataset that included 5 million publications from the top conferences in artificial intelligence and data mining areas to demonstrate the effectiveness of the proposed model. The accuracy rate of three-year forecasts for a number of experiments from 1997 to 2014 was about 60%. To visualize the forecast, the t-SNE and Word2Vec methods were used. Clusters of trending keywords on the semantic map helped to accurately identify promising directions. Two examples of forecast visualizations for the topic “Intelligent methods for data and image analysis” are presented. The presented visualizations serve as the analytical method for predicting topic trends and promising directions.


2020 ◽  
Vol 12 (3) ◽  
pp. 449 ◽  
Author(s):  
Henrique G. Momm ◽  
Racha ElKadiri ◽  
Wesley Porter

Long-term temporal and spatial information of crop type supports a wide range of applications including hydrological and climatological studies. In the U.S., yearly crop data layers (CDLs) are available starting in the early 2000s and have been developed using combined field information and sets of temporal imagery from multiple sensors. Development of long-term crop-type layers similar to CDLs is restricted by reduced accessibility to imagery and the necessary auxiliary datasets. In this study, a procedure to generate a historical crop type was developed and evaluated. Time series of Normalized Difference Vegetation Index (NDVI) datasets from Landsat 5 TM sensor for the Lower Bear Creek watershed were collected and processed. Object-based pseudo phenology curves, represented by the NDVI time series, were generated using noise filtering and dimensionality standardization procedures for the years 1985, 1990, 1995, 2000, and 2005. Classifiers were developed and evaluated using random-forest machine learning algorithms and CDL datasets as the reference. Increased generalization performance was obtained when the model was developed using multi-year datasets. This can be attributed to improved crop type representation during the training phase coupled with characterization of yearly variations due to natural (weather) and anthropogenic factors (farming management). Source of uncertainties were the presence of multiple crops within objects, phenological similarities between soybean and corn/maize, and the accuracy of CDL itself. The proposed procedure supports the development of historic crop types for long-term studies at the field scale in agricultural watersheds.


Author(s):  
Agbassou Guenoupkati ◽  
Adekunlé Akim Salami ◽  
Mawugno Koffi Kodjo ◽  
Kossi Napo

Time series forecasting in the energy sector is important to power utilities for decision making to ensure the sustainability and quality of electricity supply, and the stability of the power grid. Unfortunately, the presence of certain exogenous factors such as weather conditions, electricity price complicate the task using linear regression models that are becoming unsuitable. The search for a robust predictor would be an invaluable asset for electricity companies. To overcome this difficulty, Artificial Intelligence differs from these prediction methods through the Machine Learning algorithms which have been performing over the last decades in predicting time series on several levels. This work proposes the deployment of three univariate Machine Learning models: Support Vector Regression, Multi-Layer Perceptron, and the Long Short-Term Memory Recurrent Neural Network to predict the electricity production of Benin Electricity Community. In order to validate the performance of these different methods, against the Autoregressive Integrated Mobile Average and Multiple Regression model, performance metrics were used. Overall, the results show that the Machine Learning models outperform the linear regression methods. Consequently, Machine Learning methods offer a perspective for short-term electric power generation forecasting of Benin Electricity Community sources.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroto Yamashita ◽  
Rei Sonobe ◽  
Yuhei Hirono ◽  
Akio Morita ◽  
Takashi Ikka

AbstractSpectroscopic sensing provides physical and chemical information in a non-destructive and rapid manner. To develop non-destructive estimation methods of tea quality-related metabolites in fresh leaves, we estimated the contents of free amino acids, catechins, and caffeine in fresh tea leaves using visible to short-wave infrared hyperspectral reflectance data and machine learning algorithms. We acquired these data from approximately 200 new leaves with various status and then constructed the regression model in the combination of six spectral patterns with pre-processing and five algorithms. In most phenotypes, the combination of de-trending pre-processing and Cubist algorithms was robustly selected as the best combination in each round over 100 repetitions that were evaluated based on the ratio of performance to deviation (RPD) values. The mean RPD values were ranged from 1.1 to 2.7 and most of them were above the acceptable or accurate threshold (RPD = 1.4 or 2.0, respectively). Data-based sensitivity analysis identified the important hyperspectral regions around 1500 and 2000 nm. Present spectroscopic approaches indicate that most tea quality-related metabolites can be estimated non-destructively, and pre-processing techniques help to improve its accuracy.


2021 ◽  
Vol 13 (3) ◽  
pp. 67
Author(s):  
Eric Hitimana ◽  
Gaurav Bajpai ◽  
Richard Musabe ◽  
Louis Sibomana ◽  
Jayavel Kayalvizhi

Many countries worldwide face challenges in controlling building incidence prevention measures for fire disasters. The most critical issues are the localization, identification, detection of the room occupant. Internet of Things (IoT) along with machine learning proved the increase of the smartness of the building by providing real-time data acquisition using sensors and actuators for prediction mechanisms. This paper proposes the implementation of an IoT framework to capture indoor environmental parameters for occupancy multivariate time-series data. The application of the Long Short Term Memory (LSTM) Deep Learning algorithm is used to infer the knowledge of the presence of human beings. An experiment is conducted in an office room using multivariate time-series as predictors in the regression forecasting problem. The results obtained demonstrate that with the developed system it is possible to obtain, process, and store environmental information. The information collected was applied to the LSTM algorithm and compared with other machine learning algorithms. The compared algorithms are Support Vector Machine, Naïve Bayes Network, and Multilayer Perceptron Feed-Forward Network. The outcomes based on the parametric calibrations demonstrate that LSTM performs better in the context of the proposed application.


Author(s):  
Gudipally Chandrashakar

In this article, we used historical time series data up to the current day gold price. In this study of predicting gold price, we consider few correlating factors like silver price, copper price, standard, and poor’s 500 value, dollar-rupee exchange rate, Dow Jones Industrial Average Value. Considering the prices of every correlating factor and gold price data where dates ranging from 2008 January to 2021 February. Few algorithms of machine learning are used to analyze the time-series data are Random Forest Regression, Support Vector Regressor, Linear Regressor, ExtraTrees Regressor and Gradient boosting Regression. While seeing the results the Extra Tree Regressor algorithm gives the predicted value of gold prices more accurately.


2018 ◽  
Vol 50 (2) ◽  
pp. 655-671
Author(s):  
Tian Liu ◽  
Yuanfang Chen ◽  
Binquan Li ◽  
Yiming Hu ◽  
Hui Qiu ◽  
...  

Abstract Due to the large uncertainties of long-term precipitation prediction and reservoir operation, it is difficult to forecast long-term streamflow for large basins with cascade reservoirs. In this paper, a framework coupling the original Climate Forecasting System (CFS) precipitation with the Soil and Water Assessment Tool (SWAT) was proposed to forecast the nine-month streamflow for the Cascade Reservoir System of Han River (CRSHR) including Shiquan, Ankang and Danjiangkou reservoirs. First, CFS precipitation was tested against the observation and post-processed through two machine learning algorithms, random forest and support vector regression. Results showed the correlation coefficients between the monthly areal CFS precipitation (post-processed) and observation were 0.91–0.96, confirming that CFS precipitation post-processing using machine learning was not affected by the extended forecast period. Additionally, two precipitation spatio-temporal distribution models, original CFS and similar historical observation, were adopted to disaggregate the processed monthly areal CFS precipitation to daily subbasin-scale precipitation. Based on the reservoir restoring flow, the regional SWAT was calibrated for CRSHR. The Nash–Sutcliffe efficiencies for three reservoirs flow simulation were 0.86, 0.88 and 0.84, respectively, meeting the accuracy requirement. The experimental forecast showed that for three reservoirs, long-term streamflow forecast with similar historical observed distribution was more accurate than that with original CFS.


2021 ◽  
Vol 118 (40) ◽  
pp. e2026053118
Author(s):  
Miles Cranmer ◽  
Daniel Tamayo ◽  
Hanno Rein ◽  
Peter Battaglia ◽  
Samuel Hadden ◽  
...  

We introduce a Bayesian neural network model that can accurately predict not only if, but also when a compact planetary system with three or more planets will go unstable. Our model, trained directly from short N-body time series of raw orbital elements, is more than two orders of magnitude more accurate at predicting instability times than analytical estimators, while also reducing the bias of existing machine learning algorithms by nearly a factor of three. Despite being trained on compact resonant and near-resonant three-planet configurations, the model demonstrates robust generalization to both nonresonant and higher multiplicity configurations, in the latter case outperforming models fit to that specific set of integrations. The model computes instability estimates up to 105 times faster than a numerical integrator, and unlike previous efforts provides confidence intervals on its predictions. Our inference model is publicly available in the SPOCK (https://github.com/dtamayo/spock) package, with training code open sourced (https://github.com/MilesCranmer/bnn_chaos_model).


Sign in / Sign up

Export Citation Format

Share Document