scholarly journals DEVELOPMENT OF ROAD SURFACE BASED ON LOCAL RAW MATERIALS AND INDUSTRIAL WASTE

2021 ◽  
Vol 58 (3) ◽  
pp. 101-112
Author(s):  
M. M. Titov ◽  
◽  
K.A. Yerimbetov ◽  

A review of the literature on the use of thermal power plants (TPPs) in the production of asphalt concrete was conducted. The advantages and disadvantages of asphalt concrete coatings are analyzed. According to experts, the reason lies in the violation of construction technology. And, in principle, the topics of ensuring compliance with construction standards and legislative regulation are among the most relevant in the construction of roads in Kazakhstan.The features of the use of asphalt-resin-paraffin waste from oil fields and ash of the Kyzylorda thermal power plant as part of asphalt concrete in road construction are considered. The construction of the pavement with the use of asphalt concrete based on the composite binder system "Bitumen - asphalt concrete-tar-paraffin waste (ARPW) - TPP ash" has been developed. Due to the stratification of the concrete mixture, the cement milk will be separated from the coarse aggregate, so the upper layer, which experiences the main loads and impacts from the wheels of cars, turned out to be without the main coarse aggregate. This subsequently led to its rapid wear and the formation of a rut. Cement concrete coating with all the positive aspects described below and obvious, and here, too, there are disadvantages of these types of coating, it is not the inability to open traffic immediately after the completion of construction and the need for expansion joints. The author reveals not only the advantages of asphalt concrete coatings, but also the disadvantage of asphalt mixtures in practical use in highways.

Author(s):  
Т. Дмитриева ◽  
T. Dmitrieva ◽  
Н. Куцына ◽  
N. Kucyna ◽  
А. Безродных ◽  
...  

The paper discusses the main aspects of soil reinforcement in road construction by adding a binder component to them. The use of this technology allows to solve the problem of high-quality raw materials shortage while improving the physicomechanical characteristics or keeping them at the same level, as well as to increase labor productivity and reduce production costs. The technogenic raw materials for the production of soil concrete were studied, the main physicomechanical characteristics and requirements that must be taken into account when selecting the composition of the soil concrete mixture were analyzed. The paper compares the physicomechanical characteristics of the road composite, reveals the advantages and disadvantages of introducing binder components of various types: cement, cement with modifier and a complex binder. It has been established that the introduction of a complex binder or cement with modifier contributes to the improvement of the physicomechanical characteristics while reducing the consumption of cement in the composition of the soil-concrete mixture compared to traditional soil-concrete with cement.


2018 ◽  
Vol 276 ◽  
pp. 110-115
Author(s):  
Martin Ťažký ◽  
Martin Labaj ◽  
Rudolf Hela

The by-products of energy industry are nowadays often affected by new limits governing the production of harmful gases discharged into the air. These stricter and stricter criteria are often met by electricity producers by changing the combustion process in thermal power plants itself. Nowadays, the SNCR (selective non-catalytic reduction) application is quite common in the combustion process in order to help reduce the nitrogen oxide emission. This article deals with the primary measures of thermal power plants, which in particular consist of a modified treatment of raw materials (coal) entering the combustion process. These primary measures then often cause the formation of fly ash with unsuitable fineness for the use in concrete according to EN 450. The paper presents the comparison of the physico-mechanical parameters of several fly ashes with a different fineness values. The primary task is to assess the impact of non-suitable granulometry in terms of EN 450 on the other physico-mechanical parameters of fly ashes sampled within the same thermal power plant. Several fly ashes produced in the Czech Republic and surrounding countries were evaluated in this way.


2020 ◽  
Author(s):  
Katarina Šter ◽  
Sabina Kramar

<p>Al-rich mineral resources are one of the essential components for the production of the novel sustainable mineral binders. Belite-sulfoaluminate (BCSA) cements, which are considered as low-carbon and low-energy, allows the substitution of natural raw materials with secondary ones. In East-Southeast European countries (ESEE) there are huge amounts of various industrial and mine residues that are either landfilled or currently have a low recycling rate. These residues are generated from mining activities (mine waste) and as a by product of different types of industry, such as thermal power plants, steel plants or the aluminium industry (slags, ashes, red mud, etc.). Within the framework of the RIS-ALiCE project, in cooperation with 15 project partners from Slovenia, Austria, France, Hungary, Serbia, Bosnia and Herzegovina and Macedonia, a network of relevant stakeholders has been established in the field of currently unused aluminium-containing mine and industrial residues. Inside the created network mine and industrial residues have been mapped and valorised in order to evaluate their suitability for the use in innovative and sustainable low CO<sub>2</sub>-mineral binder production. Aluminium-containing residues are characterized with respect to their chemical, physical and radiological composition using different analytical methods such as X ray fluorescence spectroscopy, ICP optical emission spectrophotometry, gravimetry, X ray powder diffraction, gamma spectroscopy, etc. The long-term activity of network between wastes holders/producers and mineral end users will be enabled via developed Al-rich residues registry, including a study of the potential technological, economic and environmental impacts of applying the innovative methodology of the sustainable secondary raw materials management in ESEE region. Developed registry with the data valuable for both, waste providers as waste users in ESEE region, can be later-on upscaled also to other regions of Europe. It will provide the data on the available and appropriate Al-rich secondary resources, which will enablethe production of innovative low-CO<sub>2 </sub>cements.</p><p><strong>Keywords:</strong> secondary raw material, alternative binders, Al-rich residues, networking, mapping, valorisation, registry.</p>


China's industries are rapidly growing, and with that generation of waste is also increasing. Associated environmental concerns over construction and demolition waste, industrial waste such as fly ash generated by thermal power plants need to be utilized in some form. Autoclave aerated concrete is a lightweight material that can be used as an alternative building material; it is widely composed of raw materials such as cement, quicklime, sand, gypsum, and an aerating agent like aluminum powder. In this study, 40% waste will be utilized, Construction waste (5%,10%,15%....40%) and Fly ash (35%,30%,25….0%)respectively, keeping the aerating agent constant at 0.06% that is aluminum powder. The compressive strength of the material will be checked after autoclaving at 2000 temperature and 1Mpa Pressure for 6 hours. The study aims to design an autoclave aerated concrete material and to recycle the waste generated by various industries mainly from the construction sector.


Author(s):  
I. I. Maronchuk ◽  
D. D. Sanikovich ◽  
V. I. Mironchuk

The paper considers the main trends in the development of the world market of solar photovoltaics over the past few years. It is shown that the industry is a very rapidly evolving one among the branches of renewable energy and modern industries as a whole. It is obvious that the prime cost of the of solar energy being produced is rapidly approaching the price of electricity generated by traditional methods at nuclear power plants and thermal power plants. The aspects of the development of the efficiency of modern research solar cells made of various materials using innovative technological solutions based on the data provided by the National Laboratory for Renewable Energy (NREL, USA) in 2017 are noted. For the convenience of analysis, the research solar cells are divided into four technological groups. The advantages and disadvantages of solar cells, including the specific features of their production and prospects for development are considered separately for each group; the maximum efficiency for the year 2017 is estimated. A possible alternative to the future development of modern high-performance single-transition solar cells is the use of fundamentally new materials based on nanoheteroepitaxial structures with quantum dots. The possibilities of absorption (processing) by such structures of both short-wave radiation and long-wave part of the solar radiation spectrum for the purpose of generation of electric energy by increasing the efficiency of solar cells on their basis have been demonstrated. The optimal materials for their production and the principles of action of high-performance solar cells on their basis have been considered. The prospects of manufacturing nanoheteroepitaxial structures with quantum dots by liquid-phase epitaxy with pulse cooling of the substrate have been substantiated.


2017 ◽  
pp. 102-119
Author(s):  
V.S. Nikitin ◽  
◽  
Y.A. Simonov ◽  
V.N. Polovinkin ◽  
V.A. Volkov ◽  
...  

The capabilities of the domestic shipbuilding industry for creation of innovation infrastructure in the Arctic region have been studied. The perspective trends of constructing the universal floating stations for electricity supply and heat supply with a variety of power plants are shown, the examples of implemented solutions during their creation are shown, advantages and disadvantages are noted. The examples of other promising elements of the Arctic infrastructure, including floating plants for processing of hydrocarbon raw materials, are given.


Author(s):  
L.P. Chernyak ◽  
L.I. Melnyk ◽  
N.O. Dorogan ◽  
I.A. Goloukh

This work used a combination of modern physico-chemical research methods with standardized testing of technological and operational properties of raw materials, clinker, cement and compositions with its application. Results over of research of the silicate systems with rice husk and ash-fly as technogenic raw material for making of cement clinker are driven. The features of the chemical-mineralogical composition, phase transformations during burning and astringent properties of material at the use of 42,5-50,5 % industry wastes in composition initial raw material mixtures are shown. The object of the study were raw material mixtures for the production of Portland cement clinker based on the systems of chalk - clay - man-made raw materials and chalk - man-made raw materials. The possibility of replacing exhaustible and non-renewable natural raw materials with a complex of multi-tonnage wastes of agro-industry and heat energy, which meets the objectives of expanding the raw material base of cement production, resource conservation and environmental protection. Peculiarities of phase formation during firing of silicate systems of chalk-polymineral clay and chalk-technogenic raw materials taking into account changes in the quantitative ratio of components, in particular rice husk and ash-removal of thermal power plants are noted.


Author(s):  
James H. Anderson

Ocean thermal energy plants are thermal power plants that use warm ocean surface water as a source of heat and cold seawater from the deep ocean as a heat sink. A historical perspective along with the development of the technology will be presented. A short description describing the subtle differences between OTEC and fossil and nuclear plants will be presented. Open cycle OTEC and closed cycle OTEC will be described with a focus on the influence of choice of working fluid on the design of a plant. Various working fluids could be selected for use in closed cycle OTEC plants. A review and comparison of potential working fluids will address the advantages and disadvantages of the individual fluids. Their characteristics along with a comparison to water as a working fluid in open cycle OTEC will be explained.


2018 ◽  
Vol 60 ◽  
pp. 00026
Author(s):  
Olena Svietkina ◽  
Hanna Tarasova ◽  
Olha Netiaha ◽  
Svitlana Lysytska

The objective of the work is to study the aluminosilicate fractionation from fly ash, physical and mechanical properties of fly ash derived from the Thermal Power Plants (TPP) wastes. Ash, carbon concentrate (unburned carbon), ash concentrate and products of their treatment with reagents were tested by optical methods. The particle morphology of the objects of research was studied with the scanning electron microscope REM-100. The composition of the ash phases was investigated using the X-ray diffractometer DRON-2. A dispersed analysis of the TPP fly ash suggests a conclusion that it is advisable to separate particles of a narrow grain-size class within the range from 40 to 150 μm with an ash content of about 33%. The first product may be enriched by flotation method. Such a coal product may be used as a reducing medium in metallurgical processes, agglomeration, etc. The calorific capacitance of the concentrate is about 6000 kcal/kg (25000 kJ/kg).


Sign in / Sign up

Export Citation Format

Share Document