scholarly journals Investigation of the effect of slag on mixing of a bucket bath at bottom blowing by a method of physical modeling

Author(s):  
V.P. Piptyuk ◽  
P.G. Prokopenko ◽  
S.V. Grekov ◽  
G.O. Andrievsky

The purpose of the work is to determine the effect of slag on the processes of mixing the steel melt in the ladle during its bottom purge. The study by physical modeling was carried out on a transparent bucket model with its bottom purge without slag layer and, if any, it was present. Water was used as the liquid of the metal, and slag was sunflower oil. The bath was washed with air at various costs. Controled the thickness of the slag layer and the surface area of the metal surface from it. The level of conductivity of a water bath was determined depending on the variables. A slight decrease in the electrical conductivity of the melt mist (water) in the presence of slag is observed, as well as an increase in the thickness of the slag layer and the surface area of the melt surface with increasing air flow. The factors which can be applied for the calculation of hydrodynamic processes during the processing of steel on the "ladle-furnace" installation, taking into account the slag component, are revealed. It is shown that when the air flow increases, the diameter of the water released from the slag (oil) increases, and when the volume of the latter is stored, the thickness of its layer increases. The expediency of continuation of researches by cold physical modeling of hydrodynamics, heat and mass transfer with and without slag is shown, which will allow them to be taken into account in hot modeling and in industrial conditions.

2016 ◽  
Vol 40 (3) ◽  
pp. 2655-2660 ◽  
Author(s):  
Emma Oakton ◽  
Jérémy Tillier ◽  
Georges Siddiqi ◽  
Zlatko Mickovic ◽  
Olha Sereda ◽  
...  

High surface area Nb and Sb-doped tin oxides are prepared by co-precipitation. The differences in conductivity are rationalised using HT-XRD, SSNMR and Nb K-edge XANES characterisation.


2017 ◽  
Vol 5 (32) ◽  
pp. 16522-16536 ◽  
Author(s):  
Alejandra García ◽  
Cristina Fernandez-Blanco ◽  
Jose R. Herance ◽  
Josep Albero ◽  
Hermenegildo García

Due to the electrical conductivity, charge mobility and large surface area, graphenes in small weight percentages can increase the efficiency of semiconductors in photoelectrodes. The review covers CO2 generation, H2 evolution and pollutants degradation.


2018 ◽  
Vol 37 (7) ◽  
pp. 665-674
Author(s):  
Liguang Zhu ◽  
Yanan Jia ◽  
Zengxun Liu ◽  
Caijun Zhang ◽  
Xingjuan Wang ◽  
...  

AbstractPrecise control of inclusion and molten steel compositions during ladle-furnace refining is important to obtain high-quality steel. Mass-transfer behavior affects these compositions. A model was developed to investigate the mass transfer occurring between molten steel, slag, inclusions, and the refractory during ladle-furnace refining, using two-film theory to describe the reactions. A coupled-reaction model based on the CaO–Al2O3–MgO–SiO2–FeO–P2O5 slag and Mn–Si–Al–Ca–Mg–P–S–O steel systems was applied to describe the reactions between molten steel and slag; the reactions between the refractory lining and slag or steel were described using average industrial erosion rate data. The model was used to calculate changes in the compositions of molten steel and slag, oxygen activity at the slag–molten steel interface, and composition of the inclusions. The calculated results agreed with operational results for a 100 t ladle furnace at the Tangsteel plant in China.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2412-2427
Author(s):  
Tunnapat Worarutariyachai ◽  
Surawut Chuangchote

Alkali lignin (AL) fibers with a smooth surface and fine morphological appearance were successfully produced via electrospinning using a simple heated single spinneret system, instead of typical electrospinning of lignin with added synthetic polymer blends or conventional co-axial electrospinning. To reduce the size of the fibers, glycerol was added to the spinning solution as a co-solvent for surface tension reduction and electrospinnability improvement. After electrospinning, stabilization and carbonization were subsequently performed to convert AL fibers to carbon fibers (CFs). The obtained CFs displayed rough and uneven surfaces. However, the CFs derived from glycerol-added solution showed greater electrical conductivity, specific surface area, and porosity compared with those from pure AL solution. Furthermore, the results indicated that the inorganic salts on the rough surface of CFs were successfully removed by sulfuric acid (H2SO4) washing. After H2SO4 washing, the CFs revealed a smoother surface and higher electrical conductivity, specific surface area, and porosity.


Nano LIFE ◽  
2016 ◽  
Vol 06 (03n04) ◽  
pp. 1642005 ◽  
Author(s):  
Lu Zhang ◽  
Guangfeng Hou ◽  
Zhizhen Wu ◽  
Vesselin Shanov

With the promising applications in artificial intelligence systems and wearable health care devices, great efforts have been devoted to develop advanced pressure sensors. Graphene-based materials are promising pressure sensor materials due to the excellent electrical conductivity, outstanding mechanical properties and large surface area. This review summarizes the recent advances and progress in graphene and graphene-based pressure sensors. Perspectives and challenges in this exciting field are also highlighted and discussed.


Sign in / Sign up

Export Citation Format

Share Document