FTP Algebraic Formal Modelling using ACP - Study on FTP Active Mode and Passive Mode

Author(s):  
Pedro Juan Roig ◽  
Salvador Alcaraz ◽  
Katja Gilly
2013 ◽  
Vol 717 ◽  
pp. 592-597
Author(s):  
Surachai Panich

This paper introduced the rehabilitation for leg lower limp with exoskeleton suit. The rehabilitation is mainly classified in three modes, which are active, passive and active - assistive mode. In active mode, it provides appropriate resistance to the muscles to increase endurance and strength, because the patients must lift leg lower limp by their effort. In passive mode, patients cannot participate in process of rehabilitation and no effort is required, because patients leg lower limb will be driven by exoskeleton suit. In the last active-assistive mode is the combination of active and passive mode for patients, who has capability to move their joints but not reached the desired level. The control algorithm is designed to achieve rehabilitation modes by using classical PID controller.


The paper investigates the feasibility of adding a liquid heater to an oil-immersed transformer. It proves that design the high efficiency of power transformers, losses due to idling and short circuits are substantial and are scattered in the environment as heat. The paper proposes a novel design that implements a liquid (coolant) heater to enable the unit not only to convert electricity, but also to generate heat. In order to analyze the feasibility of such heat recycling, the authors have developed an equivalent thermal circuit and a mathematical model thereof. Said heater can operate in two modes. In the passive mode, the coolant it contains only absorbs the heat emitted (lost) by the power transformer. In the active mode, it also receives the heat emitted due to the passage of electric current through the pipes of the heater. The paper further introduces the definition of heater efficiency. Studies have shown that up to 50 % of transformer heat losses can be recycled by heating the coolant in the heater. The paper presents the relationship between utilized heat and transformer losses, as well as heater efficiency as a function of coolant flow rate. The heater efficiency exceeds 90 % in the active mode.


Author(s):  
С.М. Фёдоров ◽  
Е.А. Ищенко ◽  
Е.В. Папина ◽  
К.А. Бердников ◽  
Ю.Д. Савкина

Рассматривается пассивная радиочастотная метка, которая находится на гибкой подложке, что приводит к появлению проблемы с изменением характеристик при изгибе метки. В процессе исследования производилось моделирование для трех ситуаций: плоской метки, изогнутой внутрь и наружу. Благодаря современным методам электродинамического моделирования возможно определить все основные характеристики RFID метки - в активном режиме: обратные потери, диаграмму направленности; в пассивном режиме: диаграмму обратного рассеяния, токи и напряжения в нагрузке. При моделировании были построены графики зависимости амплитуд токов и напряжений в нагрузке от частоты, пиковые значения эффективной площади рассеяния. Благодаря полученным данным можно определить наиболее оптимальные частоты для облучения RFID метки, чтобы обеспечить ее работу в активном режиме (высокие токи и напряжения в нагрузке), а также в режиме обнаружения - большие значения ЭПР. Приводятся графики и таблицы для сравнения исследуемых случаев, по которым видны изменения характеристик при изгибе метки, что делает невозможным применение системы в широких диапазонах частот, так как стоит учитывать ее возможные изгибы The article discusses a passive RFID tag that sits on a flexible substrate, which leads to a problem with changing characteristics when the tag is bent. In the course of the study, we carried out modeling for three situations: a flat tag, curved inward and outward. Thanks to modern methods of electrodynamic modeling, it is possible to determine all the main characteristics of an RFID tag - in the active mode: return loss, radiation pattern; in passive mode: diagram of backscatter, currents and voltages in the load. During the simulation, we plotted graphs of the dependence of the amplitudes of currents and voltages in the load on frequency, peak values of the effective scattering area. Thanks to the data obtained, it is possible to determine the most optimal frequencies for irradiation of an RFID tag in order to ensure its operation in an active mode (high currents and voltages in the load), as well as in the detection mode - large ESR values. The article provides graphs and tables for comparing the cases under study, which show changes in characteristics when the tag is bent, which makes it impossible to use the system in wide frequency ranges, since its possible bends should be taken into account


2013 ◽  
Vol 307 ◽  
pp. 316-320
Author(s):  
Mustafa Tinkir ◽  
Mete Kalyoncu ◽  
Yusuf Şahin

In this paper, the dynamic behaviour of two degree of freedom building-like structure system against unexpected input such as seismic excitation is considered by experimentally. Proposed system consists of two floors structure with active mass damping (AMD) and shaker. Passive and active mode deflection responses of the floors are investigated and also a cart is used to suppress vibrations, which moves linear direction and is mounted on the second floor. PV (proportional and velocity) control of the cart is realized in passive mode. Moreover LQR (Linear Quadratic Regulator) control is designed to control the cart in active mode while system under excitation. For this aim a full-order observer is designed and implemented to control strategy. Displacements of cart, deflections and accelerations results of the floors are presented separately for passive and active mode responses of the system in the form of graphics.


2021 ◽  
pp. 75-75
Author(s):  
Sekar Sivakumar Dana ◽  
Sekar Subramani ◽  
Valarmathi Thirumalai Natesan ◽  
Mudhu Marimuthu ◽  
Godwin Arockiaraj

In the present work the drying characteristics and proximate analysis of turkey berry (Solanum torvum) were analyzed under open sun drying and greenhouse drying with two different glazing materials (UV Polyethylene sheet and Drip lock sheet) under passive and active modes. The drying rate under different modes of drying are 18.73g/h in drip lock greenhouse active mode,12.50 g/h in UV polyethylene sheet greenhouse active mode,15.22 g/hin drip lock sheet greenhouse passive mode, 11.84 g/h in UV polyethylene sheet greenhouse passive mode and 10.65 g/h in open sun drying. Twelve mathematical models were chosen to determine the drying characteristics of Turkey berry. From the statistical analysis it is found that Modified Henderson and Pabis model is the best drying model describing thin layer drying characteristics of turkey berry in both open sun drying and green house drying. The goodness of the fit achieved is based on the values of coefficient of determination(R2), sum square error(SSE), root mean square error(RMSE) and reduced chi square (?2).From the proximate analysis of dried turkey berry it is found that more amount of carbohydrate is retained in UV polyethylene greenhouse dryer under passive mode. In drip lock greenhouse dryer under passive mode the retention of vitamins such as protein, vitamin C and ash content showed a positive sign. In drip lock greenhouse dryer under active mode the retention of calcium, iron and dietary fibre is found to be high. Finally it is observed that more amounts of nutrients are retained in greenhouse drying than in open sun drying.


2013 ◽  
Vol 307 ◽  
pp. 126-130 ◽  
Author(s):  
Mustafa Tinkir ◽  
Mete Kalyoncu ◽  
Yusuf Şahin

This paper presents an experimental investigation for deflection control of two degree of freedom building-like structure system against scaled Northridge Earthquake by using PI (Proportional-Integral) controlled active mass damping. Proposed structure consist of two floors with a cart mounted on the second floor such as active mass damping (AMD) and which is used to suppress horizontal deflections. Moreover a shake table under the structure is used to create the acceleration effect of scaled earthquake. Kp and Ki gain parameters of PI controller is determined by observing passive mode behaviour of the structure against Northridge and it is used to control cart movement according to pre-determined deflection criterias of the floors. Deflection and acceleration results of the floors are obtained separately for passive and active mode responses of the system in the form of graphics.


Author(s):  
I. Makino ◽  
T. Kawanami ◽  
Y. Yahagi

A lean premixed CH4 air flame (LPF) impinges with a CH4 diluted with N2 diffusion flame (DF) having different turbulence conditions to create a lean heterogeneous combustion model such as a stratified combustion. The local quenching recovery processes of LPF and DF interacting with the turbulence in an opposed flow have been investigated experimentally using a Particle Image Velocimetry movie. The local quenching phenomena can be observed frequently with approaching the global extinction condition. The local quenching may trigger to global extinction. However, in many cases, the flame can recover from the local quenching phenomena and create the stable flame. There are three distinct local quenching recovery mechanisms namely a passive mode, an active mode, and an eddy transportation mode. These three modes depend on the local flame propagation mechanism, the bulk flow motion, and the eddy motion by turbulence. In the passive mode, the bulk flow plays an important role on the recovery process. The local quenching area is drifting outward from the stabilization point by the bulk flow and then, it is displaced by the stable flamelets. In the active mode, the local quenching area is recovered by the self-propagating wrinkled LPF from somewhere in the active zone. The active mode is observed only when the turbulence is added to the premixed flame side. In the eddy motion mode, the local quenching area is recovered by the eddy transportation. That is, the flamelet is transport by the eddy motion and the local quenching area is replaced. The wrinkled flamelet having self-propagation plays a very important role for the local quenching recovery mechanism. The turbulence on the premixed flame not only induces high possibility for the local quenching but also helps to recover from the local quenching.


1977 ◽  
Vol 35 ◽  
pp. 287-288
Author(s):  
G. A. Wilkins

There are two main modes of data-centre operation – the passive and the active. In the passive mode the data are received, catalogued and stored, and some are later copied and distributed in response to specific requests. In the past the passive mode has been represented by the many printed volumes of observational data in astronomical libraries, but the techniques of data acquisition are now such that it is often no longer practicable, even if it were desirable, to print the very large amounts of observational data that are now produced by modern instruments. In the active mode of data-centre operation the centre collects data that it considers to be useful, then evaluates, combines and analyses them, and finally publishes the results of this work. In the past the active mode has been common in astronomy, and the general catalogues of stellar data are examples of this mode of operation, but each one has required many years of effort. Modern computer systems can, however, store large amounts of data and can display, manipulate and copy them very quickly; it is now possible to combine data of many different kinds and to analyse them together, with the prospect of giving new knowledge about the systems being studied.


2020 ◽  
Vol 29 (14) ◽  
pp. 2050234 ◽  
Author(s):  
Peiqing Han ◽  
Zhaofeng Zhang ◽  
Niansong Mei

A reconfigurable architecture is presented to be compatible with conventional passive operating mode and active mode for ultrahigh frequency (UHF) and radio-frequency identification (RFID) tag. The transceiver with frequency locked on-chip oscillator is proposed to increase the read range of RFID system and the lifetime of tag. The transceiver is fabricated in 0.18[Formula: see text][Formula: see text]m standard CMOS process with the active area of 0.246[Formula: see text]mm2. For passive mode, the sensitivity of tag is [Formula: see text][Formula: see text]dBm. For the active mode, the sensitivity is [Formula: see text][Formula: see text]dBm only consuming 1.2[Formula: see text][Formula: see text]W under the supply voltage of 0.8[Formula: see text]V. The output power is [Formula: see text][Formula: see text]dBm for active transmitting mode and the power consumption is 450[Formula: see text][Formula: see text]W under the supply voltage of 1[Formula: see text]V.


Sign in / Sign up

Export Citation Format

Share Document