UV-Visible Spectrophotometric Determination of Lambda-Cyhalothrin Insecticide in Vegetables, Soil and Water Samples

2019 ◽  
Vol 31 (1) ◽  
pp. 1-9
Author(s):  
Deepak Kumar Sahu ◽  
Joyce Rai ◽  
Chhaya Bhatt ◽  
Manish K. Rai ◽  
Jyoti Goswami ◽  
...  

In modern age pesticide is used widely in agriculture. Lambda-cyhalothrin (LCT) is one of the most used pesticides which are used as a insecticide to kill pest, tricks, flies etc in agricultural field and it is also used for crop production. We have developed new method to detect LCT insecticide in agriculture field and reduce its uses. In this method we found the maximum absorbance at 460 nm for yellow colour dye. We also calculated limit of detection and limit of quantification 0.001 mg kg-1 and 0.056 mg kg-1 respectively. Molar absorptivity and Sandell’s sensitivity was also calculated and obtained 1.782 ×107 mol-1 cm-1 and 9.996 ×10-6 µg cm-2 respectively. The obtained yellow colour dye obeyed Beer’s law limit range of 0.5 µg ml -1 to 16 µg ml-1 in 25 ml. This method is less time consuming, selective, simple, sensitive and low cost. Present method is successfully applied in various soil, water and vegetable samples.

2016 ◽  
Vol 11 (2) ◽  
pp. 3540-3551
Author(s):  
Taghreed A. Mohammed ◽  
Mona A. Mohamed

A selective and new spectrophotometric method is described for determination of three antiepileptic drugs; namely lamotrigine (LAM), gabapentin (GAB), and oxcarbazepine (OXC) in drug substances and in drug products using vanillin reagent as the chromogenic agent. The method is based on a coupling reaction between the cited drugs and vanillin reagent in acidic condition. Under optimized conditions, the yellow colored products were measured at 405, 396, and 400 nm respectively. Beer’s law was obeyed at (0.4 – 10), (0.1-10), and (0.5-11) μg/mL, and  the calculated molar absorptivity values are 2.52 x 104, 1.74 x 104, and 2.54 x 104 L/mol/cm for LAM, GAB, and OXC respectively. Sandell sensitivity, the limit of detection (LOD) and limit of quantification (LOQ) were calculated. No interference was observed from common additives found in drug products. The presented method was validated according to ICH guidelines. Statistical comparison of the results was performed using Student's t-test and F-ratio at 95% confidence level, and there was no significant difference between the reference and proposed method with regard to accuracy and precision. The method offers the advantages of rapidity, simplicity and sensitivity and low cost and can be easily applied to resource poor settings without the need for expensive instrumentation and reagents.


2005 ◽  
Vol 30 (1) ◽  
pp. 29-36 ◽  
Author(s):  
E. G. Ciapina ◽  
A. O. Santini ◽  
P. L. Weinert ◽  
M. A. Gotardo ◽  
H. R. Pezza ◽  
...  

In this work, an effective and low-cost method for the determination of sodium or potassium diclofenac is proposed in its pure form and in their pharmaceutical preparations. The method is based on the reaction between diclofenac and tetrachloro-p-benzoquinone (p-chloranil), in methanol medium. This reaction was accelerated by irradiating of reactional mixture with microwave energy (1100 W) during 27 seconds, producing a charge transfer complex with a maximum absorption at 535 nm. The optimal reaction conditions values such as reagent concentration, heating time and stability of the reaction product were determined. Beer's law is obeyed in a concentration range from of 1.25x10-4 to 2.00x10-3 mol l-1 with a correlation coefficient of 0.9993 and molar absorptivity of 0.49 x10³ l mol-1 cm-1. The limit of detection (LOD) was 1.35x10-5 mol l-1 and the limit of quantification (LOQ) was 4.49x10-5 mol l-1. In the presence of the common excipients, such as glucose, lactose, talc, starch, magnesium stearate, sodium sulphite, titanium dioxide, polyethyleneglycol, polyvinylpirrolidone, mannitol and benzilic alcohol no interferences were observed. The analytical results obtained by applying the proposed method compare very favorably with those given by the United States Pharmacopeia standard procedure. Recoveries of diclofenac from various pharmaceutical preparations were within 95.9% to 103.3%, with standard deviations ranging from 0.2% to 1.8%.


2019 ◽  
Vol 10 (2) ◽  
pp. 1367-1371
Author(s):  
Khalaf F Al Samarrai ◽  
Eman Thiab A Al Samarrai ◽  
Baidaa Adnan Al Samarrai

A simple, rapid and low-cost spectrophotometric method for determination of Methyldopa (MDA) based on ion-pair formation using Bromothymol blue (BTB) as a reagent in alkaline medium (pH 8.7). The absorbance of the green-blue-coloured product is measured at 616 nm. Beer's Law is obeyed at concentration range up to 5-20μg/ml with molar absorptivity 0.8279x104 L/mol.cm. The correlation coefficient, limit of detection and limit of quantification were 0.9982, 0.4318 μg/ml and 1.4393 μg/ml respectively. The method has been successfully applied to the determination of Methyldopa in pharmaceutical preparations.


Author(s):  
Mohammad Hamzah Hamzah ◽  
Rawa M M Taqi ◽  
Muna M. Hasan ◽  
Raid J. M. Al-Timimi

A simple and accurate spectrophotometric method for the determination of Trifluoperazine HCl in pure and dosage forms was developed. The method is based on the reaction between Trifluoperazine HCl and p-chloroaniline in the presence of cerium ion as oxidizing agent which lead to the formation of violate color product that absorbed at a maximum wavelength 570nm while the blank solution was pink. Under the optimum conditions a linear relationship between the intensity and concentration of TRF in the range 4-50μg/ml was obtained . The molar absorptivity 3.74×103 L.mol-1.cm-1 , Limit of detection (2.21μg/ml), while limit of quantification was 7.39μg/ml. The proposed analytical method was compared with standard method using t-test and F-test , the obtained results shows there is no significant differences between proposed method and standard method. Based on that the proposed method can be used as an alternative method for the determination of TRF in pure and dosage forms.


2020 ◽  
Vol 32 (6) ◽  
pp. 1314-1320
Author(s):  
Lamya A. Sarsam ◽  
Salim A. Mohammed ◽  
Sahar A. Fathe

A rapid, simple and sensitive spectrophotometric and RP-HPLC methods have been developed for the quantitative determination of cefotaxime-Na in both pure and dosage forms. The spectrophotometric method was based on diazotization of cefotaxime-Na and then coupling with 8-hydroxyquinoline in an alkaline medium. The resulting azo dye exhibited maximum absorption at 551 nm with a molar absorptivity of 0.597 × 104 L mol-1 cm-1. Beer′s law was obeyed over the range 10-700 μg/25 mL (i.e. 0.4-28.0 ppm) with an excellent determination coefficient (R2 = 0.9993). The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.0194 and 0.3765 μg mL-1, respectively. The recoveries were obtained in the range 97.3-102.5% and the relative standard deviation (RSD) was better than ± 1.56. The HPLC method has been developed for the determination of cefotaxime-Na. The analysis were carried out on a C18 column and a mobile phase composed of acetonitrile and phosphate buffer solution (0.024M KH2PO4 and 0.01M H3PO4) at pH 3.5 in the ratio of 60:40 (v:v), with a flow rate of 1.0 mL min-1 and UV detection at 258 nm. The proposed method showed good linearity (in a range of concentration 1.0-200 μg mL-1. The recovery percent and a relative standard deviations were found in the range 96 to 104.8% and ± 0.017 to ± 0.031%, respectively. Both methods were applied successfully to the assay of cefotaxime-Na in commercial injection preparations.


2017 ◽  
Vol 16 (1) ◽  
pp. 37-42
Author(s):  
Lyudmyla M Antypenko ◽  
Vitaliy A Solodovnyk

A simple and low-cost UV-spectrophotometric method has been developed and validated for the quantification of Octopirox in bulk. The linearity was found at 307 ± 1 nm in 10-50 ?g/ml solution of ethanol-water (1:3, v:v) with r2 = 0.99. The limit of detection was found to be 1.18 µg/ml, while the limit of quantification was 3.58 µg/ml. The method was validated for linearity, accuracy, precision, range, ruggedness and robustness.Dhaka Univ. J. Pharm. Sci. 16(1): 37-42, 2017 (June)


2006 ◽  
Vol 60 (4) ◽  
Author(s):  
V. Lekova ◽  
K. Gavazov ◽  
A. Dimitrov

AbstractA new ternary ion-association complex of tungsten(VI), 4-nitrocatechol (NC), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (Thiazolyl Blue, MTT) was obtained and studied using an extraction-spectrophotometric method. The optimum pH, reagent concentrations, and extraction time were determined. The composition of the complex was found to be W(VI): NC: MTT = 1: 2: 2. The extraction process was investigated quantitatively and the key constants were calculated. The molar absorptivity of the chloroform extract at λmax = 415 nm was 2.8 × 104 dm3 mol−1 cm−1, and the Beer’s law was obeyed up to 8.8 μg cm−3 tungsten(IV). The limit of detection and limit of quantification were calculated to be 0.27 μg cm−3 and 0.92 μg cm−3, respectively. The effect of foreign ions and reagents was studied and a competitive method for determination of tungsten in products from ferrous metallurgy was developed. The residual standard deviation and the relative error were 0.53 % and 0.2 %, respectively.


2021 ◽  
Vol 22 (1) ◽  
pp. 115-126
Author(s):  
Zahid Ali Zounr

An easy, sensitive and accurate spectrophotometric method has been developed for the determination of Lisinopril (LNP) in pure and tablet formulations based on derivatization reaction with 2-hydroxynaphthaldehyde (2HNA). The derivatization reaction was carried out in methanol solvent at pH-5.5 at 95±2C for 15 min. The linear calibration curve was obtained that obeyed the Beer’s law within the concentration range 5-50 μgmL-1 of LNP at 433 nm with a coefficient of determination R²=0.996. The recovery was in the range from 98.25-101.82 with molar absorptivity of drug 9×103 mole-1cm-1. The method was accurate and precise (intra-day variation 0.05-0.97% and inter-day 0.07-1.6%), with limit of detection (LOD) and limit of quantification (LOQ) 0.264 μgmL-1 and 0.8 μgmL-1, respectively. No interferences from the excipients were detected. The method was applied for the rapid analysis of LNP in pharmaceutical products.


2020 ◽  
Vol 11 (4) ◽  
pp. 291-297
Author(s):  
Hutaf Mustafa Baker ◽  
Hussam Ahmad Alsaoud ◽  
Hamzeh Mohamad Abdel-Halim

A simple, sensitive and reproducible method for the determination of ranitidine hydrochloride in pharmaceutical preparations was investigated. This spectrophotometric method was based on the formation of a deep red color product with ninhydrin in basic media and the absorbance measured at λmax = 480 nm. The reaction occurs at 45 °C with pH = 10 having a contact time of 38 minutes. Under the optimum conditions, Beer’s Law is obeyed in the concentration range of 8.98×103 - 9.90×104 µg/L. The coefficient of correlation was found to be 0.999 for the obtained method with molar absorptivity of 3.05×103 L/mol.cm. The calculated Sandell’s sensitivity is 0.108 μg/cm2. The limit of detection and limit of quantification are 0.0997 and 0.3023 µg/mL, respectively. The low values of the percentage relative standard deviation and percentage relative error indicate the high precision and the good accuracy of the proposed method. The stoichiometry of the reaction is determined and found to be 1:4 (Ranitidine hydrochloride:Ninhydrin). The initial rate method confirmed that this reaction is first order one.


2018 ◽  
Vol 15 (2) ◽  
pp. 6186-6198
Author(s):  
Abdul Aziz Ramadan ◽  
Souad Zeino

A simple, direct and accurate spectrophotometric method has been developed for the determination of Glimepiride (GLM) in pure and pharmaceutical formulations by complex formation with bromocresol purple (BCP). The method involves the formation of a yellow ion-pair complex between BCP with glimepiride at pH<3,8; after reacting GLM with Na2CO3 to give C24H33N4H+O5NaS which is extracted by chloroform. The formed complex [GLM]:[ BCP] was measured at lmax 418 nm against the reagent blank prepared in the same manner. Variables were studied in order to optimize the reaction conditions. Molar absorptivity (e) for complex was  20600  L.mol-1.cm-1. Beer’s law was obeyed in the concentration range of  1.226 – 46.608   mg.mL-1 in present of 5.0x10-4 mol/l of BCP with good correlation coefficient (R2= 0.9997). The relative standard deviation did not exceed 3.6%. The limit of detection (LOD) and the limit of quantification (LOQ) were 0.15 and 0.46 mg.mL-1, respectively. The proposed method was validated for specificity, linearity, precision and accuracy, repeatability, sensitivity (LOD and LOQ)  and robustness. The developed method is applicable for the determination of GLM in  pure and different dosage forms with average assay of 98.8 to 102.0% and the results are in good agreement with those obtained by the  RP-HPLC reference method.  


Sign in / Sign up

Export Citation Format

Share Document