scholarly journals Characterization of Gels Containing Pectin and Optimization of Gel Production by Taguchi Method in Food Industry

2019 ◽  
Vol 49 (3) ◽  
pp. 201-204
Author(s):  
S. Sagir ◽  
Nil Acarali ◽  
M. Z. Durak

The objective of this research was to optimize the gel production by Taguchi Method as an optimization method and characterize gels by using attenuated total reflectance Fourier transform infrared (ATR – FTIR) and Raman spectroscopy. The statistical method results were obtained and analyzed comparatively in terms of improving both cost and quality for determination of optimum pro-cess parameters. This optimization method uses the S/N ratio as a measure of quality characteristics deviating from or nearing to the desired values. This method is expected to serve as an alternative to the conventional optimization method. Clear discrimina-tion and classification of all the studied gel products containing pectin were achieved by hierarchical clus-ter. As a result, the gels produced could be evaluated in food products such as ice cream, milk dessert or other gelatin containing products such as pharmaceuticals and cosmetics.

2009 ◽  
Vol 72 (9) ◽  
pp. 1909-1915 ◽  
Author(s):  
ELIZABETH M. GRASSO ◽  
AHMED E. YOUSEF ◽  
LUIS A. RODRIGUEZ-ROMO ◽  
LUIS E. RODRIGUEZ-SAONA

Bacillus species may be resistant to processing and sanitation procedures, making their control an important issue in the food industry. The objective of this study was to develop a rapid method for the differentiation of Bacillus cells at the strain level using infrared microspectroscopy and multivariate pattern recognition techniques. Aliquots (10 ml) of vegetative cells (~103 CFU/ml) from four strains of each of three Bacillus species (B. cereus, B. mycoides, and B. thuringiensis) were filtered onto hydrophobic grid membranes. The membranes were placed on tryptic soy agar and incubatedat 42°C for 24 h and then removed from the agar and dried, and the biomass of individual vegetative colonies was directly measured by attenuated total reflectance infrared (ATRIR) microspectroscopy. Soft independent modeling of class analogy models generated from second derivative transformed spectra in the 1,300 to 900 cm−1 region exhibited clusters that permitted accurate strain-level classification of all isolates. Major discrimination was related to the signal from phosphate-containing compounds, likely phospholipids. Results indicate that a simple ATR-IR microspectroscopy technique combined with multivariate analysis could provide the food industry with a rapid and reagent-free screening procedure to complement more elaborate molecular identification methods.


2020 ◽  
Vol 70 (12) ◽  
pp. 4594-4600

The purpose of this study was to characterize some types of biomass wastes resulted from different activities such as: agriculture, forestry and food industry using thermogravimetric and ICP-MS analyses. Also, it was optimized an ICP-MS method for the determination of As, Cd and Pb from biomass ash samples. The ICP-MS analysis revealed that the highest concentration of metals (As, Cd, Pb) was recorded in the wood waste ash sample, also the thermogravimetric analysis indicated that the highest amount of ash was obtained for the same sample (26.82%). The biomass wastes mentioned in this study are alternative recyclable materials, reusable as pellets and briquettes. Keywords: ash, biomass, ICP-MS, minor elements, TG


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 931
Author(s):  
Ioana-Codruţa Mirică ◽  
Gabriel Furtos ◽  
Ondine Lucaciu ◽  
Petru Pascuta ◽  
Mihaela Vlassa ◽  
...  

The aim of this research was to develop new electrospun membranes (EMs) based on polycaprolactone (PCL) with or without metronidazole (MET)/nano-hydroxyapatite (nHAP) content. New nHAP with a mean diameter of 34 nm in length was synthesized. X-ray diffraction (XRD) and attenuated total reflectance Fourier transform infrared spectroscopy (FTIR-ATR) were used for structural characterization of precursors and EMs. The highest mechanical properties (the force at maximum load, Young’s modulus and tensile strength) were found for the PCL membranes, and these properties decreased for the other samples in the following order: 95% PCL + 5% nHAP > 80% PCL + 20% MET > 75% PCL + 5% nHAP + 20% MET. The stiffness increased with the addition of 5 wt.% nHAP. The SEM images of EMs showed randomly oriented bead-free fibers that generated a porous structure with interconnected macropores. The fiber diameter showed values between 2 and 16 µm. The fiber diameter increased with the addition of nHAP filler and decreased when MET was added. New EMs with nHAP and MET could be promising materials for guided bone regeneration or tissue engineering.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
David Perez-Guaita ◽  
Zack Richardson ◽  
G. Quintas ◽  
Julia Kuligowski ◽  
Diana Eva Bedolla ◽  
...  

Infrared Spectroscopy (IR) enables the direct and rapid characterization of cells at the molecular level. Achieving a rapid and consistent cell preparation is critical for the development of Point-of-Care diagnostics...


2018 ◽  
Vol 101 (4) ◽  
pp. 1145-1155 ◽  
Author(s):  
Swati Chandrawanshi ◽  
Santosh K Verma ◽  
Manas K Deb

Abstract Perchlorate (ClO4−) is an environmental pollutant that affects human health. Perchlorate acts as a competitive inhibitor of iodine uptake in the thyroid gland (sodium–iodide symporter inhibitor); thus, its determination is important for public health concerns. Water and milk constitute a significant portion of the human diet. Because regular intake leads to an increase in perchlorate concentration in the human body, the estimation of perchlorate is of great concern. In this work, ion-pair single-drop microextraction (SDME) combined with attenuated total reflectance (ATR)-FTIR spectroscopy has been developed for the determination of perchlorate in bioenvironmental (soil, water, dairy milk, breast milk, and urine) samples. Perchlorate was extracted in a single drop of methyl isobutyl ketone as an - with the cationic surfactant cetyltrimethylammonuim bromide under optimized conditions. The strongest IR peak (at 1076 cm−1) was selected for the quantification of perchlorate among three observed vibrational peaks. Eight calibration curves for different concentration ranges of perchlorate were prepared, and excellent linearity was observed for absorbance and peak area in the range of 0.03–100 ng/mL perchlorate, with r values of 0.977 and 0.976, respectively. The RSDs (n = 8) for the perchlorate concentration ranges of 0.03–100, 0.03–0.5, 0.5–10, and 10–100 ng/mL were in the range of 1.9–2.7% for the above calibration curves. The LOD and LOQ in the present work were 0.003 and 0.02 ng/mL, respectively. The extracted microdrop was analyzed directly by ATR-FTIR spectroscopy. The parameters affecting SDME, i.e, effect of pH, stirring rate, reagent concentration, microdrop volume, and extraction time, were optimized, and the role of foreign species was also investigated. F- and t-tests were performed to check the analytical QA of the method. A noteworthy feature of the reported method is the noninterference of any of the associated ions. The results were compared with those of the ion chromatography MS method, and a high degree of acceptability was found. The method was successfully applied for the determination of perchlorate in bioenvironmental samples.


Sign in / Sign up

Export Citation Format

Share Document