Morphology and Physical Properties of Thin Films of Thermoplastic Elastomers from Blends of Natural Rubber and Polyethylene

1988 ◽  
Vol 61 (4) ◽  
pp. 577-584 ◽  
Author(s):  
Sania Akhtar

Abstract The morphology and properties of thin films prepared from NR-PE blends have been discussed. The present paper emphasizes the effect of method of preparation on the final properties. To this end, the films were quenched in ice (−10°C), cooled in water (25°C), cooled in air (30°C), and cooled in the press (from 160°C to room temperature) under a pressure of 0.34 MPa. The modulus, tensile and tear strengths, and elongation at break were found to vary considerably with the method of preparation. X-ray and DSC results confirmed the fact that the changes were related to the crystallite morphology rather than the degree of crystallinity. In addition, it was observed that the high rubber blends were less susceptible to the method of preparation than the high plastic blends and pure polyethylene.

2017 ◽  
Vol 19 (1) ◽  
pp. 132-142 ◽  
Author(s):  
Javad Heidarian ◽  
Aziz Hassan

Abstract Carbon nanotube (CNT)-, carbon black (CB)-filled fluoroelastomer (FE) and unfilled-FE compounds were prepared (CNT/FE, CB/FE and FE). The compounds were subjected to heat air aging and characterized by tensile test and X-Ray Diffraction (XRD) analysis. Results show that CNT improved tensile properties of FE before and after aging. All samples show stress induced crystallization (SIC) during tension. XRD results show that under all conditions, the crystals were in the form of γ-phase. For both aged and un-aged specimens, the degree of crystallinity (Xc) is low. After tensile stretching, Xc of un-aged specimens increases tremendously, with larger crystal size. Under the same conditions, the order of elongation at break (EL) was FE > CB/FE > CNT/FE. Normal modulus (NM) and tangent modulus (TM) at the same conditions was in the order of CNT/FE > CB/FE > FE. Tensile strength had the order of CNT/FE > CB/FE > FE.


2012 ◽  
Vol 501 ◽  
pp. 236-241 ◽  
Author(s):  
Ftema W. Aldbea ◽  
Noor Bahyah Ibrahim ◽  
Mustafa Hj. Abdullah ◽  
Ramadan E. Shaiboub

Thin films nanoparticles TbxY3-xFe5O12 (x=0.0, 1.0, 2.0) were prepared by the sol-gel process followed by annealing process at various annealing temperatures of 700° C, 800° C and 900° C in air for 2 h. The results obtained from X-ray diffractometer (XRD) show that the films annealed below 900°C exhibit peaks of garnet mixed with small amounts of YFeO3 and Fe2O3. Pure garnet phase has been detected in the films annealed at 900°C. Before annealing the films show amorphous structures. The particles sizes measurement using the field emission scanning electron microscope (FE-SEM) showed that the particles sizes increased as the annealing temperature increased. The magnetic properties were measured at room temperature using the vibrating sample magnetometer (VSM). The saturation magnetization (Ms) of the films also increased with the annealing temperature. However, different behavior of coercivity (Hc) has been observed as the annealing temperature was increased.


1994 ◽  
Vol 359 ◽  
Author(s):  
Jun Chen ◽  
Haiyan Zhang ◽  
Baoqiong Chen ◽  
Shaoqi Peng ◽  
Ning Ke ◽  
...  

ABSTRACTWe report here the results of our study on the properties of iodine-doped C60 thin films by IR and optical absorption, X-ray diffraction, and electrical conductivity measurements. The results show that there is no apparent structural change in the iodine-doped samples at room temperature in comparison with that of the undoped films. However, in the electrical conductivity measurements, an increase of more that one order of magnitude in the room temperature conductivity has been observed in the iodine-doped samples. In addition, while the conductivity of the undoped films shows thermally activated temperature dependence, the conductivity of the iodine-doped films was found to be constant over a fairly wide temperature range (from 20°C to 70°C) exhibiting a metallic feature.


2013 ◽  
Vol 710 ◽  
pp. 170-173
Author(s):  
Lian Ping Chen ◽  
Yuan Hong Gao

It is hardly possible to obtain rare earth doped CaWO4thin films directly through electrochemical techniques. A two-step method has been proposed to synthesize CaWO4:(Eu3+,Tb3+) thin films at room temperature. X-ray diffraction, energy dispersive X-ray analysis, spectrophotometer were used to characterize their phase, composition and luminescent properties. Results reveal that (Eu3+,Tb3+)-doped CaWO4films have a tetragonal phase. When the ratio of n (Eu)/n (Tb) in the solution is up to 3:1, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Tb element; on the contrary, when the ratio in the solution is lower than 1:4, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Eu element. Under the excitation of 242 nm, sharp emission peaks at 612, 543, 489 and 589 nm have been observed for CaWO4:(Eu3+,Tb3+) thin films.


2014 ◽  
Vol 2014 ◽  
pp. 1-3 ◽  
Author(s):  
Alka Garg ◽  
Monika Tomar ◽  
Vinay Gupta

Bismuth iodide is a potentially active material for room temperature radiation detector, as it is well reported in the literature that it has both wide energy band gap and high atomic absorption coefficient. Crystalline films of high atomic number and high radiation absorption coefficient can absorb the X-rays and convert them directly into electrical charges which can be read by imaging devices. Therefore, it was proposed to grow thin films of Bismuth iodide on glass substrate using thermal evaporation technique in vacuum to avoid the inclusion of impurities in the films. The structural studies of the films were carried out using XRD and optical absorption measurement was carried out in the UV/VIS region using spectrophotometer. All Bismuth iodide films grown at room temperature are polycrystalline and show X-ray diffraction peaks at angles reported in research papers. The optical transmission spectra of BiI3 films show a high transmission of about 80% in visible region with a sharp fall near the fundamental absorption at 650 nm. Resistivity of the as-grown film was found to be around 1012 ohm-cm suitable value for X-ray detection application. Films were subjected to scanning electron microscopy to study the growth features of both as-grown and annealed films.


MRS Advances ◽  
2016 ◽  
Vol 1 (22) ◽  
pp. 1631-1636 ◽  
Author(s):  
Boya Cui ◽  
D. Bruce Buchholz ◽  
Li Zeng ◽  
Michael Bedzyk ◽  
Robert P. H. Chang ◽  
...  

ABSTRACTThe cross-plane thermal conductivities of InGaZnO (IGZO) thin films in different morphologies were measured on three occasions within 19 months, using the 3ω method at room temperature 300 K. Amorphous (a-), semi-crystalline (semi-c-) and crystalline (c-) IGZO films were grown by pulsed laser deposition (PLD), followed by X-ray diffraction (XRD) for evaluation of film quality and crystallinity. Semi-c-IGZO shows the highest thermal conductivity, even higher than the most ordered crystal-like phase. After being stored in dry low-oxygen environment for months, a drastic decrease of semi-c-IGZO thermal conductivity was observed, while the thermal conductivity slightly reduced in c-IGZO and remained unchanged in a-IGZO. This change in thermal conductivity with storage time can be attributed to film structural relaxation and vacancy diffusion to grain boundaries.


1993 ◽  
Vol 313 ◽  
Author(s):  
Mary Beth Stearns ◽  
Yuanda Cheng

ABSTRACTSeveral series of CoxAg1-x granular thin films (-3000Å) were fabricated by coevapora-tion of Co and Ag in a dual e-beam UHV deposition system at varying substrate temperatures. These films have low field magnetoresistance values as large as 31% at room temperature and 65% at liquid N2 temperature. The structure of the films was determined using magnetization measurements as well as x-ray and various electron microscopy techniques. The composition was determined using Rutherford backscattering spectroscopy. The Magnetoresistance was measured at both room and liquid N2 temperatures.We deduce from the magnetization and RBS Measurements that the films consist of Co globules embedded in a Ag Matrix and that there is no appreciable mixing of the Co and Ag atoms in the films deposited at substrate temperatures ≥ 400°K. The size of the Co globules is seen to increase with increasing Co concentration and the maximum magnetoresistance occurs in those films having the smallest Ag thickness which provides magnetic isolation of the Co globules.We suggest that the large magnetoresistance of these films arises from the same mechanism which causes the low field magnetoresistance in pure ferromagnets, namely, the scattering of the highly polarized d conduction electrons of the Co at magnetic boundaries. The large increase in the room temperature magnetoresistance of the CO/Ag films as compared to those of pure 3d ferromagnetic films is due to the distance between the magnetic boundaries being reduced to a few nanometers, because of the small size of the single domain Co globules, as compared to a few microns in 3d ferromagnets.


2019 ◽  
Vol 14 (29) ◽  
pp. 55-72
Author(s):  
Bushra A. Hasan

Alloys of InxSe1-x were prepared by quenching technique withdifferent In content (x=10, 20, 30, and 40). Thin films of these alloyswere prepared using thermal evaporation technique under vacuum of10-5 mbar on glass, at room temperature R.T with differentthicknesses (t=300, 500 and 700 nm). The X–ray diffractionmeasurement for bulk InxSe1-x showed that all alloys havepolycrystalline structures and the peaks for x=10 identical with Se,while for x=20, 30 and 40 were identical with the Se and InSestandard peaks. The diffraction patterns of InxSe1-x thin film showthat with low In content (x=10, and 20) samples have semicrystalline structure, The increase of indium content to x=30decreases degree of crystallinity and further increase of indiumcontent to x=40 leads to convert structure to amorphous. Increase ofthickness from 300 to 700nm increases degree of crystallinity for allindium content. Transmittance measurements were used to calculaterefractive index n and the extinction coefficient k using Swanepole’smethod. The optical constants such as refractive index (n), extinctioncoefficient (k) and dielectric constant (εr, εi) increases for low indiumcontent samples and decreases for high indium content samples,while increase of thickness increases optical constants for all xvalues. The oscillator energy E0, dispersion energy Ed, and otherparameters have been determined by Wemple - DiDomenico singleoscillator approach.


2011 ◽  
Vol 98 (19) ◽  
pp. 192512 ◽  
Author(s):  
Hardeep Thakur ◽  
P. Thakur ◽  
Ravi Kumar ◽  
N. B. Brookes ◽  
K. K. Sharma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document