Carbon-Black-Elastomer Interaction II: Effects of Carbon Black Surface Activity and Loading

1993 ◽  
Vol 66 (5) ◽  
pp. 772-805 ◽  
Author(s):  
J. A. Ayala ◽  
W. M. Hess ◽  
G. A. Joyce ◽  
F. D. Kistler

Abstract Carbon black morphology, surface activity and loading have been varied systematically to study the effects on an SBR formulation. The surface activity of five commercial grades of carbon black was varied by heat treating the standard grade samples at 1100°C and 1500°C in an inert atmosphere. Measurements on carbon black-elastomer interaction were based on a parameter I, defined elsewhere. The parameter I exhibited the previously reported correlation with known indicators of the surface activity of carbon blacks. The heats of adsorption by inverse gas chromatography at infinite dilution have been found useful as a measure of the carbon-black surface energy related to rubber interaction. These measurements have been employed in conjunction with carbon-black morphology and loading to develop a surface-area-modified and a surface energy-modified effective volume fraction V′ and ψ, respectively. The parameter V′ was utilized to explain the variation of the dynamic elastic modulus E′ at 1 % double strain amplitude (DSA) for all rubber compounds. The parameter ψ was used to explain the variation of E′ at 25% DSA and the factor σ in the calculation of I. The parameters V′ and ψ provide a model for the estimation of I from fundamental carbon-black morphological properties and surface energy.

2000 ◽  
Vol 73 (2) ◽  
pp. 293-309 ◽  
Author(s):  
H. Darmstadt ◽  
N-Z. Cao ◽  
D. M. Pantea ◽  
C. Roy ◽  
L. Sümmchen ◽  
...  

Abstract The surface energy of thermal and furnace carbon blacks was determined by inverse gas chromatography (IGC) at infinite dilution. In general, the specific surface energy decreases with decreasing carbon black specific surface area. However, there is also an influence of the concentration of impurities during the carbon black production. The surface energy decreases with decreasing concentration of impurities. The carbon black surface and bulk chemistry was studied by electron spectroscopy for chemical analysis (ESCA), secondary ion mass spectroscopy (SIMS) and Raman spectroscopy. Scanning tunnelling microscopy (STM) was used for characterization of the surface morphology. Thermal grades of carbon black produced from high purity natural gas feedstock do not contain fewer surface functional groups than the other grades. No correlation between the concentration and nature of the oxygen and sulphur surface groups and the carbon black surface energy was found. Instead, a correlation between the surface energy and the polyaromatic character of the carbon black surface exists. Both increased in the order: thermal blacks from high purity natural gas feedstock < thermal black from oil feedstock < furnace blacks. The increase of the surface energy might be related to the formation of active sites which are formed upon removal of non-carbon elements during the carbon black formation. There was no principal difference in the surface morphology of thermal blacks from high purity gas feedstock and other blacks.


1977 ◽  
Vol 50 (4) ◽  
pp. 842-862 ◽  
Author(s):  
G. C. McDonald ◽  
W. M. Hess

Abstract Electron microscope image analysis of carbon blacks in specific rubber compounds has greatly expanded the range of useful applications for studies of this type. This dispersed carbon-gel procedure has improved the sampling and test precision at operating speeds that are now reasonably comparable to the simple colloidal procedures for characterizing carbon black. Improved models have been developed for deriving black surface area and intraunit occlusion capacity. The EM image analysis approach has been useful in applying certain principles of reinforcement theory, as well as in explaining rubber property differences that are attributable to carbon black variables. Studies on hysteresis at constant strain (E″) have indicated that the important black variables, in diminishing order of significance, are loading, structure (intraunit occlusion and anisometry), unit size, unit size distribution, and surface activity. For hysteresis at constant energy (resilience), the most important black variables appear to be black loading, unit size, unit size distribution, surface activity, and structure. In terms of tread wear resistance (moderate wear rates with SBR-BR), a somewhat different pattern of carbon black variables is apparent. At constant loading, the most important black properties appear to be specific surface area, surface activity, structure, and unit size distribution. At any given tread wear-surface area level, hysteresis can be lowered by broadening the unit size distribution and increasing the surface activity of the black.


1997 ◽  
Vol 70 (1) ◽  
pp. 15-24 ◽  
Author(s):  
H. Takino ◽  
S. Iwama ◽  
Y. Yamada ◽  
S. Kohjiya

Abstract Rubber and carbon black compounds show complex behaviors in their mixing process due to their complicated microcomposite structure. Therefore, establishing a clear relationship between the mixing state of the rubber compound and the physical properties of its cured rubber has still remained to be solved in spite of formidable efforts by many rubber technologists. This paper investigated the influence of a processing additive on the carbon black incorporation and its dispersion behavior by inspecting Banbury power curves. From this investigation, we considered that good wettability toward the carbon black surface was necessary for processing additives in order to improve carbon black dispersion. The function of the processing additive was thought to enhance the surface lubrication of carbon black for disagglomeration in the early steps of mixing. The dry grip properties of a tire was estimated from the temperature dependence of dynamic viscoelastic properties of rubber compounds, with improved carbon black dispersion due to the processing additive; and it was confirmed by an actual tire running evaluation. Consequently, we found that tread compounds with improved carbon black dispersion had a remarkable effect on tire dry-grip properties at high temperatures.


1991 ◽  
Vol 64 (1) ◽  
pp. 19-39 ◽  
Author(s):  
J. A. Ayala ◽  
W. M. Hess ◽  
F. D. Kistler ◽  
G. A. Joyce

Abstract A number of different techniques were applied to measure carbon-black-surface reactivity and the level of black-polymer interaction in four different elastomer systems (SBR, IIR, NR, and NBR) representing differences in unsaturation, crystallinity and polarity. Known within-grade surface activity variations were based on partial graphitization of an N121-type carbon black. The surface activity of different black grades was studied as a function of variations in both surface area and DBPA. Direct measurements of carbon-black-surface reactivity were based on hydrogen analysis, SIMS, IGC, and moisture adsorption. In-rubber measurements included bound rubber, SIMS of cut surfaces, and an interaction parameter, σ/η, which is derived from the slope (σ) of the stress-strain curve at low elongations, and (η), the ratio of dynamic modulus (E′) at 1% and 25% DSA. The following trends were observed: 1. The σ/η values provided a good measure of black-polymer interaction in all four polymer systems for either the within-grade or across-grade comparisons. 2. Higher σ/η values were indicated for SBR and NBR, followed by NR and IIR in that order. 3. SBR indicated the greatest sensitivity for bound-rubber measurements in terms of distinguishing within-grade variations in black-polymer interaction, followed by IIR, NR, and NBR in that order. 4. Positive SIMS on dry carbon black indicates the presence of complex hydrocarbon structures suitable for chemical reactivity at the carbon-black surface. 5. SIMS analyses on the dry carbon blacks exhibited intensity variations in the negative hydrocarbon fragments which were in line with the within-grade variations in hydrogen content. 6. SIMS analyses on the cut-rubber compound surfaces showed overall variations in intensity which were proportional to the range and level of the bound-rubber measurements. The most meaningful variations were recorded for SBR and IIR. 7. Heats of adsorption derived from IGC measurements with different adsorbates showed an excellent correlation with black-polymer interaction for the within-grade studies. Measurements across grades did not correlate as well with the in-rubber measurements, but the best results were obtained using styrene as the adsorbate. 8. The within-grade moisture adsorption measurements showed excellent agreement with IGC and the other techniques for the N121 series of heat-treated carbon blacks.


1968 ◽  
Vol 41 (2) ◽  
pp. 382-399 ◽  
Author(s):  
Marvin L. Deviney ◽  
Lawrence E. Whittington

Abstract Radiotracer techniques have been applied to the study of interactions of carbon black surface functional groups with two chosen organic systems. The basic reaction mechanisms demonstrated in this study may have implications in elastomer reinforcement. Direct radiochemical evidence supports the conclusions of Hallum and Drushel (based on less direct polarographic data) that surface quinonic groups exhibit hydrogen abstraction activity toward tertiary hydrogens in paraffinic hydrocarbons. Studies on the system carbon black and styrene using tritium radiotracer have provided direct evidence that phenolic hydrogens participate in the polymerization acceleration and graft polymer formation reaction and are transferred to the growing polystyrene chains as postulated by Donnet. Several methods have been developed for specifically labelling certain oxygenated functional groups on the carbon surface with tritium and for tritium labelling carbon black in aromatic hydrogen positions. The techniques developed in this work and the basic reaction mechanisms derived will permit this investigation to be extended into a radiochemical study of carbon black surface interactions with elastomer related systems of interest to the rubber industry.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 153
Author(s):  
Sang-Min Lee ◽  
Sang-Hye Lee ◽  
Jae-Seung Roh

In the present study, carbon black activated by CO2 gas was examined through XRD analysis, especially with regard to changes in its structural parameters. Based on the results, its activation process was thoroughly analyzed. The activation process was controlled by isothermally activating the carbon black inside a reaction tube through which CO2 gas flowed. With this approach, the degree of activation was varied as desired. At an early stage of the activation process, the amorphous fraction on the carbon black surface was preferentially activated, and later the less-developed crystalline carbon (LDCC) region inside the carbon black particles started to be activated. The latter process was attributable to the formation of pores inside the carbon black particles. As the activation process proceeded further, the more-developed crystalline carbon (MDCC) region started to be activated, thereby causing the pores inside the carbon black particles to grow larger. At the last stage of the activation process, La was found to be decreased to about 40 Å. This implied that the edges of the graphite crystals had been activated, thus causing the internal pores to grow and coalesce into larger pores. Activated conductive Super-P with enhanced pore properties is expected to have wide applications.


Sign in / Sign up

Export Citation Format

Share Document