Coherent Expanded Aerogels

1932 ◽  
Vol 5 (4) ◽  
pp. 600-603 ◽  
Author(s):  
S. S. Kistler

Abstract There are few topics in colloid chemistry that have experienced such extensive investigation as that of the structure of gels. Numerous hypotheses have been presented and supported by experimental data of one character or another. Certain aspects of gels have seemed to classify them as solid solutions, others as emulsions, while yet others give strong support to a two-phase, solid-liquid structure. Although the latter theory in similar form to that postulated by Nägeli in 1858 has been accepted by most of the foremost colloid chemists, the evidence has not been sufficiently unequivocal to convince all. The evidence presented in the results of diffusion experiments through gels, the fact that the electrical conductivity, refractive index, and vapor pressure before and after setting are identical, at least in certain cases, and the known facts of syneresis would seem to leave little room for doubt of the two-phase nature of gels in general. A theory in order to be perfectly acceptable must, however, enable verifiable predictions to be made from it.

2018 ◽  
Vol 31 (3) ◽  
pp. 20
Author(s):  
Sarmad M. M. Ali ◽  
Alia A.A. Shehab ◽  
Samir A. Maki

In this study, the ZnTe thin films were deposited on a glass substrate at a thickness of 400nm using vacuum evaporation technique (2×10-5mbar) at RT. Electrical conductivity and Hall effect measurements have been investigated as a function of variation of the doping ratios (3,5,7%) of the Cu element on the thin ZnTe films. The temperature range of (25-200°C) is to record the electrical conductivity values. The results of the films have two types of transport mechanisms of free carriers with two values of activation energy (Ea1, Ea2), expect 3% Cu. The activation energy (Ea1) increased from 29meV to 157meV before and after doping (Cu at 5%) respectively. The results of Hall effect measurements of ZnTe , ZnTe:Cu films show that all films were (p-type), the carrier concentration (1.1×1020 m-3) , Hall mobility (0.464m2/V.s) for pure ZnTe film, increases the carrier concentration (6.3×1021m-3) Hall mobility (2m2/V.s) for doping (Cu at 3%) film, but  decreases by increasing Cu concentration.


2021 ◽  
pp. 108128652110214
Author(s):  
Xiaodong Xia ◽  
George J. Weng

Recent experiments have revealed two distinct percolation phenomena in carbon nanotube (CNT)/polymer nanocomposites: one is associated with the electrical conductivity and the other is with the electromagnetic interference (EMI) shielding. At present, however, no theories seem to exist that can simultaneously predict their percolation thresholds and the associated conductivity and EMI curves. In this work, we present an effective-medium theory with electrical and magnetic interface effects to calculate the overall conductivity of a generally agglomerated nanocomposite and invoke a solution to Maxwell’s equations to calculate the EMI shielding effectiveness. In this process, two complex quantities, the complex electrical conductivity and complex magnetic permeability, are adopted as the homogenization parameters, and a two-scale model with CNT-rich and CNT-poor regions is utilized to depict the progressive formation of CNT agglomeration. We demonstrated that there is indeed a clear existence of two separate percolative behaviors and showed that, consistent with the experimental data of poly-L-lactic acid (PLLA)/multi-walled carbon nanotube (MWCNT) nanocomposites, the electrical percolation threshold is lower than the EMI shielding percolation threshold. The predicted conductivity and EMI shielding curves are also in close agreement with experimental data. We further disclosed that the percolative behavior of EMI shielding in the overall CNT/polymer nanocomposite can be illustrated by the establishment of connective filler networks in the CNT-poor region. It is believed that the present research can provide directions for the design of CNT/polymer nanocomposites in the EMI shielding components.


Sign in / Sign up

Export Citation Format

Share Document