Fractionation of Rubber

1941 ◽  
Vol 14 (1) ◽  
pp. 1-14 ◽  
Author(s):  
George F. Bloomfield ◽  
Ernest Harold Farmer

Abstract Latex rubber which has been purified to the point at which it contains an insignificant amount of nitrogen can be separated by fractional dissolution in a mixture of petroleum and acetone into a series of hydrocarbon fractions of decreasing solubility and increasing molecular magnitude. All these fractions except the highest are soluble in petroleum and in benzene. Crepe rubber, on the other hand, appears invariably to contain a small, most-soluble fraction of oxygenated rubber, and a small similar quite insoluble fraction of material of high molecular weight. Between these extremes the rubber can be divided into fractions of increasing molecular weight, although, up to the present, about 70 per cent of the total rubber has appeared in a single fraction. It may be possible later, by judicious choice of another pair of solvents, to resolve this major fraction into a series of subfractions. Kemp and Peters refer to the effect of polar nonsolvents in reducing the viscosity of rubber solutions and also in assisting to bring gel rubber into solution, phenomena to which the polar molecules conceivably contribute by countering the forces of association between the rubber molecules. The present series of fractionations was conducted throughout in the presence of a polar nonsolvent (acetone), and hence may be considered to approach towards a separation of true rubber molecules as distinct from molecular aggregates. It is found, however, that, whereas the more soluble fractions of acetone-extracted crepe rubber contain small proportions of nitrogen, the least soluble fractions contain substantial proportions. Any effect which the nitrogenous material may have in assisting to link together hydrocarbon molecules to which it is attached, i. e., in contributing to the high-molecular condition of a portion of natural rubber, remains at present uncertain in character. The fractions of rubber, and especially the higher ones, show a strong tendency to become insoluble when they have once been freed from the last traces of solvent. It seems doubtful whether the decreased solubility is due to oxygen as it would require to be effective at exceedingly low concentrations.

1980 ◽  
Vol 58 (7) ◽  
pp. 669-676 ◽  
Author(s):  
Jairo H. Lora ◽  
Morris Wayman

In order to obtain further understanding of the nature of lignin reactions during autocatalysed hydrolysis (autohydrolysis) of wood, milled wood lignin (MWL) was isolated from aspen (Populus tremuloides) and treated under autohydrolysis conditions. By this means reactions of the lignin itself could be distinguished from those taking place between lignin and the carbohydrate or other components of the wood. The material after the reaction was separated into a dioxane insoluble fraction (DI), a dioxane soluble but ether insoluble fraction (DSEI), and an ether soluble fraction (ES). Studies were carried out on the DI and DSEI fractions; no direct study was made of the small ES fraction.The formation of DI material increased linearly during the first 7.5 min at 170 °C and then levelled off. At the same time DSEI decreased and then levelled off. Gel permeation chromatography of the DSEI fraction suggested that during autohydrolysis there is an initial generation of low molecular weight fragments which recombine to form first a high molecular weight soluble fraction and from this the insoluble product. The DSEI fraction contained increased conjugated and unconjugated keto groups. Carboxylic acids were also detected; they have been attributed to the reincorporation of low molecular weight aromatic acids generated by the hydrolysis of the corresponding esters. The dioxane insoluble (DI) fraction had fewer unconjugated keto groups than the DSEI fraction, indicating that these groups participated in the condensation reactions leading to the formation of insoluble material. These probably involve position 6 of the aromatic ring.


1962 ◽  
Vol 45 (3) ◽  
pp. 427-438 ◽  
Author(s):  
Hikoichi Sakai

The contractility of the thread model prepared from the KCl-soluble proteins of the egg and in vivo factors for the contraction are investigated in Hemicentrotus, Anthocidaris, and Pseudocentrotus eggs. The contractility of the thread model induced by metal ions or cystine changes during development in the characteristic pattern of high at the metaphase and low at the monaster and the interkinetic stages. The change in contractility is paralleled by the change in the —SH content of the protein. The water-soluble fraction of the eggs has activity in causing contraction of the thread model. This activity changes during development in the same way as the contractility itself. The contraction of the thread induced by the water-soluble fractions is accompanied by a decrease in the —SH content of the thread. The activity of the water-soluble fraction in inducing the contraction is proportional to its ability to decrease the number of —SH groups. On boiling, the activity is largely destroyed. The activity is due to two components, one being non-dialyzable and the other dialyzable. Separately each component has little effect, but when mixed, the activity of the original sample is completely restored.


1978 ◽  
Vol 176 (3) ◽  
pp. 977-981 ◽  
Author(s):  
S Funakawa ◽  
Y Funae ◽  
K Yamamoto

Two forms of renin, one of mol.wt. 43,000 and the other 60,000, were found in the dog kidney. Conversion between the two forms of renin was reversible at neutral pH. Though the molecular weight of renin in kidney-cortex homogenate was 43,000, it was completely converted into high-molecular-weight renin in the presence of substances that react with thiol groups. On the contrary, stored renin in the granules was the form of normal size (mol. wt. 43,000) regardless of the absence or presence of such substances. The present experiments indicated that renin is stored in the granules as the form of normal size and might be converted into high-molecular-weight renin when it is released from the granules and attached to some substance in the soluble fraction of renal-cortical tissue.


1992 ◽  
Vol 117 (4) ◽  
pp. 600-606 ◽  
Author(s):  
H. Yoshioka ◽  
K. Aoba ◽  
Y. Kashimura

The concentrations of water-soluble polyuronides in apples [Malus domestica Borkh.) and pears (Pyrus communis L.) increased, but those of EDTA- and HCl-soluble polyuronides decreased during softening. Total polyuronide content decreased slightly during softening in both fruits. Depolymerization of polyuronides was observed only in the water-soluble fraction in pear fruit during softening, concomitant with an increase in polygalacturonase (PG) activity. No detectable depolymerization was observed in any of the polyuronide fractions during softening of apple fruit nor was any PG activity detected. The polyuronide fractions extracted from pear and apple cell walls contained various amounts of methoxyl groups. Polyuronides with a high degree of methoxylation were preferentially lost from EDTA- and HCl-soluble polyuronides during softening of both fruit. The water-soluble polyuronide had a lower degree of methoxylation than those lost in the EDTA- and HCl-soluble fractions. These results suggest de-esterification of polyuronides with a high degree of methoxylation rather than the depolymerization of polyuronides in the solubilization of polyuronides during ripening of apples and pears.


1987 ◽  
Author(s):  
K Fujimura ◽  
T Fujimoto ◽  
M Takemoto ◽  
K Oda ◽  
S Maehama ◽  
...  

Experiments were designed and performed to analyse the cytoskeleton assembly and the interaction of glycoprotein (GP)IIb, IIIa and cytoskeletal proteins during platelet activation. A23187 stimulated 125I labeled platelets were solubilised with Triton X-100 solution and centrifuged. The insoluble fraction were analysed by two dimensional electrophoresis and the soluble fraction were fractionated with 5-25% sucrose gradient centrifugation and analysed by SDS PAGE. In Triton X-100 insoluble fraction, high molecular weight protein fraction(MW > 106) was present after stimulation which were consisted of actin binding protein(ABP), myosin heavy chain(MHC), actin and GPIIb and IIIa. And some of the ABP and MHC formed dimer. ABP and actin in this fraction were decreased with 1 mM CaCl2 treatment but the reduction of ABP was inhibited by leupeptm. In Triton X-100 soluble fraction after stimulation, some of the ABP, MHC, P235 protein, actin and small amount of GPIIb, IIIa were sedimented in the same high density fraction but most proteins were sedimented as a monomer form or GPIIb-IIIa complex form. The GPIIb, IIIa incorporation in high molecular weight protein fraction or high density fraction was absent in Ca++ chelating condition or the presence of competitive fibrinogen binding inhibitor which blocked the platelet aggregation. It is concluded that cytoskeletal proteins and GPIIb, IIIa are assembled each other and formed high molecular weight protein fraction or dimer formation during activation. In stimulated platelets these assembled cytoskeletal proteins containing GPIIb, IIIa were also found in Triton X-100 soluble fraction as a precursor of high molecular weight fraction in Triton X-100 insoluble fraction. The binding of fibrinogen to GPIIb-IIIa complex induce the linkage of GPIIb, IIIa to assembled cytoskeletal proteins.


1979 ◽  
Author(s):  
H. Sandberg ◽  
K. Brodén ◽  
L.-O. Andersson

It is known that the procoagulant activity of purified Factor VIII is strongly increased when incubated with concentrations of thrombin below 0.1 unit/ml. It has been assumed that this also is a mechanism of physiological importance thus that activation of Factor VIII by low concentrations of thrombin is one step in normal blood coagulation. The rate constant tor the reaction between Factor VIII and thrombin was estimated by two different methods. In one method formation of “activated” Factor VIII in a system containing thrombin, purified Factor VIII and albumin added as stabilizer was measured. In the other method the competition of purified Factor VIII as substrate for thrombin was compared with fibrinogen and a chromogenic peptide substrate. As expected it was found that thrombin had higher affinity for Factor VIII than for fibrinogen. The values calculated for the second order rate constant, using 240,000 as the molecular weight of the reactive unit in Factor VIII, were similar for the various systems, around 106s-1M-1.


1940 ◽  
Vol 24 (2) ◽  
pp. 213-246 ◽  
Author(s):  
Roger M. Herriott ◽  
V. Desreux ◽  
John H. Northrop

1. Solubility curves of crude pepsin preparations indicate the presence of more than one protein. 2. One of these proteins has been isolated and crystallized and found to have constant activity and constant solubility in several solvents. 3. The solubility measurements are complicated by the unstable nature of the protein and the fact that in certain solvents the solubility of the protein is markedly affected by the presence of non-protein nitrogen decomposition products while in others this is not the case. 4. A more insoluble protein has been prepared of lower solubility and lower activity, as measured by hemoglobin digestion. The activity, as measured by the digestion of other proteins, is about the same as the more soluble fraction. This insoluble fraction does not have constant solubility. 5. Mixtures of the insoluble and the soluble fractions give preparations having rounded solubility curves typical of solid solutions and resembling very closely those of the original preparation. 6. A small amount of pepsinogen and pepsin from pepsinogen has been separated which has nearly twice the enzymatic activity on hemoglobin as does the most active pepsin previously isolated.


1946 ◽  
Vol 24b (5) ◽  
pp. 238-245 ◽  
Author(s):  
W. R. Ashford ◽  
L. M. Cooke ◽  
Harold Hibbert

Fractional dissolution has been applied to nitrated corn starch with the consequent removal of ethanol-soluble fractions. Hot and cold ethanol-soluble fractions have been removed in this way amounting to from 10 to 25% of the crude nitrate. The ethanol-soluble fractions, consisting of low-molecular weight and low nitrogen-content material, are not stabilized by ethanol. The insoluble portion is greatly stabilized as a result of the ethanol treatment.The insoluble residue left after ethanol treatment of crude starch nitrate possesses good explosive properties, a high nitrogen content, and high stability. The stabilization of starch nitrate by ethanol is shown to be the result of a dual action, namely, (a) removal of highly unstable material of low molecular weight and nitrogen content, and (b) the conferring of increased stability by some, as yet unknown, mechanism on the insoluble portion.


1970 ◽  
Vol 119 (4) ◽  
pp. 651-657 ◽  
Author(s):  
Ramadasan Kuttan ◽  
A. N. Radhakrishnan

1. trans-4-Hydroxy-l-proline was found to occur in the bound state in the leaves of sandal (Santalum album L.), in which large amounts of free cis-4-hydroxy-l-proline are also present. 2. Bound trans-4-hydroxy-l-proline was present, associated mainly with a `wall' fraction and a `soluble' fraction roughly in equal proportions. 3. Bound proline is present only in small amounts in the `soluble' fraction but is mostly associated with the `wall' fraction and the other sedimented fractions. 4. In the free amino acid fraction more than 98% of the hydroxyproline had the cis-configuration, whereas in the `wall' and `soluble' fractions more than 90% of the bound hydroxyproline was in the trans-configuration. 5. Various extraction procedures indicated heterogeneity of the hydroxyproline-containing components. Hot 5% (w/v) trichloroacetic acid extracts about 25% of hydroxyproline and m-NaOH extracts an additional 25%. 6. Incorporation of [14C]proline into the bound hydroxyproline was demonstrated. The hydroxyproline component of the `soluble' fraction does not appear to be the precursor of that of the `wall' fraction.


1998 ◽  
Vol 61 (1) ◽  
pp. 78-86 ◽  
Author(s):  
CORAL SÁNCHEZ-ROMERO ◽  
RAFAEL GUILLÉN ◽  
ANTONIA HEREDIA ◽  
ANA JIMÉNEZ ◽  
JUAN FERNÁNDEZ-BOLAÑOS

The changes that occur in the pectic fractions in the cell wall of olives of the Manzanilla variety (Olea europaea pomiformis) during processing (initial treatment at high pH and subsequent lactic fermentation) have been researched. After studying various conditions for fractionating the pectic polysaccharides, the most adequate were chosen, involving sequential extraction with water, imidazole-hydrochloric acid buffer, sodium carbonate, 1 M potassium hydroxide, and 4 M potassium hydroxide. In the unprocessed fruit, the fractions studied consist mainly of high-molecular-weight acidic polysaccharides (70 to 250 kDa): homogalacturonans, rhamnogalacturonans, and branched arabinans. These were found in different proportions depending on the extraction agent used. At the same time, significant amounts of relatively low-molecular-weight (10 to 10.5 kDa) neutral branched arabinans were found in the water-soluble fraction. As a result of the processing, changes occurred in the proportions of the different groups of polysaccharides in accordance with changes in their solubility characteristics. These changes were reflected in the processed fruit by (i) an increase in the neutral branched arabinans in the water-soluble fraction due to the increased presence of such polysaccharides originally found in the carbonate and 4 M KOH-soluble fractions; (ii) an increase in homogalacturonans and rhamnogalacturonans, without significant changes in molecular weights, in the imidazole-soluble fraction as a result of the increased presence of corresponding polysaccharides originally found in the carbonate-soluble and water-soluble fractions; (iii) a substantial increase in uronic acids in the 1 M potassium hydroxide-soluble fraction, preferentially as low-molecular-weight polysaccharides; and (iv) a solubilization of arabinans in the 4 M potassium hydroxide-soluble fraction.


Sign in / Sign up

Export Citation Format

Share Document