Polydiene Oxidations with Singlet Oxygen

1972 ◽  
Vol 45 (2) ◽  
pp. 423-436 ◽  
Author(s):  
M. L. Kaplan ◽  
P. G. Kelleher

Abstract Excited molecular oxygen in its singlet delta (1Δg) state can be made chemically in homogeneous solution and in the gas-phase by the electrodeless discharge of ground state oxygen. Both techniques have been used to perform oxidations of polydiene systems. Solutions of high cis, trans, and vinyl polybutadienes have been treated with singlet oxygen produced in situ. Only the high cis and high trans were oxidized, apparently by different mechanisms. Squalene, a model for polyisoprene, has been oxidized in solution and the initially formed hydroperoxides reduced and analyzed and found identical to the product from a photosensitized oxidation. Cis-polybutadiene films were treated with gas-phase singlet oxygen and the extent of surface oxidation was monitored spectroscopically and chemically.

1959 ◽  
Vol 37 (10) ◽  
pp. 1680-1689 ◽  
Author(s):  
L. Elias ◽  
E. A. Ogryzlo ◽  
H. I. Schiff

Molecular oxygen was subjected to an electrodeless discharge in the pressure range 0.1–3 mm Hg. The oxygen atom concentration was measured as a function of time in a flow system by means of a movable atom detector which consisted of a platinum wire coated with a suitable catalyst for atom recombination. The atom concentration was calculated from the heat liberated when the detector was operated under isothermal conditions. The surface recombination was found to be first order in the atom concentration. A value of 7.7 × 10−5 was obtained for the recombination coefficient (γ) on Pyrex. No temperature dependence for γ was observed. The gas phase recombination of oxygen atoms was found to be consistent with the mechanism[Formula: see text]The rate constant for the third-order reaction was found to have a value of 1.0 × 1014 cc2 mole−2 sec−1, and a small negative temperature dependence.Evidence was also obtained for the presence of considerable amounts of excited molecular oxygen in electrically activated O2.


2014 ◽  
Vol 86 (6) ◽  
pp. 945-952 ◽  
Author(s):  
Erbay Kalay ◽  
Hamdullah Kılıç ◽  
Mustafa Catir ◽  
Murat Cakici ◽  
Cavit Kazaz

AbstractA novel method for the production of singlet oxygen from H2O2 was developed. A combination of iodoarene (ArI), methyltrioxorhenium (MTO), and H2O2 in the presence of pyridine as the co-catalyst efficiently produced singlet molecular oxygen (1O2) under biphasic conditions. The existence of 1O2 was demonstrated by trapping experiments with aromatic dienes, 1,3-cyclodienes, and alkenes. The mechanism of 1O2 production from the iodoarene/MTO/35 % H2O2 system and the reaction scope was also discussed.


1971 ◽  
Vol 44 (3) ◽  
pp. 642-652 ◽  
Author(s):  
M. L. Kaplan ◽  
P. G. Kelleher

Abstract In recent years much evidence has been accumulated to implicate electronically excited oxygen ((1Δg)) molecules as the agent responsible in photo-sensitized oxidations for the formation of allylic hydroperoxides from olefins and of endoperoxides from 1 ,3-dienes. Little regarding the mechanistic aspects of the photo-oxidative degradation of polybutadiene is known, however. To determine if electronically excited oxygen ((1Δg)) molecules can oxidize PBD, the ABS polyblend and standard samples of PBD's containing high trans, high cis, and high vinyl content were treated in homogeneous solution at low temperature with chemically produced singlet oxygen in situ. The source of the singlet oxygen was the triphenylphosphite-ozone adduct. Studies by spectroscopy, elemental analysis, viscosity determinations, and gel measurements showed only the cis- and the trans-PBD were susceptible to oxidation; no chain scission was involved in the attack of cis- and trans-PBD by singlet oxygen; the oxidation of the cis-PBD involved the initial formation of hydroperoxides which on thermal decomposition yielded gel. The trans-PBD was found to oxidize but apparently by a mechanism different from that of cis-PBD. Initial singlet oxygen attack of ABS proceeds by oxidation of the PBD portion of the polyblend. It was also observed that when only a small amount of the double bonds in the cis-PBD polymer had been oxidized to hydroperoxides, subsequent thermal treatment of this sample resulted in gross structural changes in the whole polymer.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1276-1277
Author(s):  
Y. Akin ◽  
R.E. Goddard ◽  
W. Sigmund ◽  
Y.S. Hascicek

Deposition of highly textured ReBa2Cu3O7−δ (RBCO) films on metallic substrates requires a buffer layer to prevent chemical reactions, reduce lattice mismatch between metallic substrate and superconducting film layer, and to prevent diffusion of metal atoms into the superconductor film. Nickel tapes are bi-axially textured by cold rolling and annealing at appropriate temperature (RABiTS) for epitaxial growth of YBa2Cu3O7−δ (YBCO) films. As buffer layers, several oxide thin films and then YBCO were coated on bi-axially textured nickel tapes by dip coating sol-gel process. Biaxially oriented NiO on the cube-textured nickel tape by a process named Surface-Oxidation- Epitaxy (SEO) has been introduced as an alternative buffer layer. in this work we have studied in situ growth of nickel oxide by ESEM and hot stage.Representative cold rolled nickel tape (99.999%) was annealed in an electric furnace under 4% hydrogen-96% argon gas mixture at 1050°C to get bi-axially textured nickel tape.


2020 ◽  
Author(s):  
busenur Aslanoglu ◽  
Ilya Yakavets ◽  
Vladimir Zorin ◽  
Henri-Pierre Lassalle ◽  
Francesca Ingrosso ◽  
...  

Computational tools have been used to study the photophysical and photochemical features of photosensitizers in photodynamic therapy (PDT) –a minimally invasive, less aggressive alternative for cancer treatment. PDT is mainly based by the activation of molecular oxygen through the action of a photoexcited sensitizer (photosensitizer). Temoporfin, widely known as mTHPC, is a second-generation photosensitizer, which produces the cytotoxic singlet oxygen when irradiated with visible light and hence destroys tumor cells. However, the bioavailability of the mostly hydrophobic photosensitizer, and hence its incorporation into the cells, is fundamental to achieve the desired effect on malignant tissues by PDT. In this study, we focus on the optical properties of the temoporfin chromophore in different environments –in <i>vacuo</i>, in solution, encapsulated in drug delivery agents, namely cyclodextrin, and interacting with a lipid bilayer.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 163
Author(s):  
Iryna Zelenina ◽  
Igor Veremchuk ◽  
Yuri Grin ◽  
Paul Simon

Nano-scaled thermoelectric materials attract significant interest due to their improved physical properties as compared to bulk materials. Well-shaped nanoparticles such as nano-bars and nano-cubes were observed in the known thermoelectric material PbTe. Their extended two-dimensional nano-layer arrangements form directly in situ through electron-beam treatment in the transmission electron microscope. The experiments show the atomistic depletion mechanism of the initial crystal and the recrystallization of PbTe nanoparticles out of the microparticles due to the local atomic-scale transport via the gas phase beyond a threshold current density of the beam.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 965
Author(s):  
Zoé Perrin ◽  
Nathalie Carrasco ◽  
Audrey Chatain ◽  
Lora Jovanovic ◽  
Ludovic Vettier ◽  
...  

Titan’s haze is strongly suspected to be an HCN-derived polymer, but despite the first in situ measurements by the ESA-Huygens space probe, its chemical composition and formation process remain largely unknown. To investigate this question, we simulated the atmospheric haze formation process, experimentally. We synthesized analogues of Titan’s haze, named Titan tholins, in an irradiated N2–CH4 gas mixture, mimicking Titan’s upper atmosphere chemistry. HCN was monitored in situ in the gas phase simultaneously with the formation and evolution of the haze particles. We show that HCN is produced as long as the particles are absent, and is then progressively consumed when the particles appear and grow. This work highlights HCN as an effective precursor of Titan’s haze and confirms the HCN-derived polymer nature of the haze.


Sign in / Sign up

Export Citation Format

Share Document