Dependence of Tensile Strength of Vulcanized Rubber on the Degree of Cross-Linking

1950 ◽  
Vol 23 (1) ◽  
pp. 27-43
Author(s):  
Paul J. Flory ◽  
Norman Rabjohn ◽  
Marcia C. Shaffer

Abstract The suitability of disazodicarboxylates as quantitative cross-linking agents for the preparation of rubber vulcanizates of known degrees of cross-linking has been emphasized previously. In a recent paper we have presented the results of an investigation on the dependence of the equilibrium force of retraction on the elongation and degree of cross-linking of rubber and GR-S vulcanized with these compounds. The present paper reports an extension of these investigations of the relationship of physical properties of rubberlike materials to their network structure. Specifically, the tensile strength of azo vulcanized natural rubber has been explored as a function of the degree of cross-linking and of the extent of modification of the chain units. The tensile strengths of natural rubber specimens vulcanized to various extents using sulfur alone or sulfur in conjunction with various accelerators have been investigated in considerable detail recently by Gee, who has emphasized the critical dependence of the tensile strength on the degree of cross-linking. Values for the latter quantity, however, were deduced indirectly from the equilibrium force of retraction using the simple proportionality relationship between force of retraction and degree of cross-linking afforded by the theory of rubber elasticity. This relationship is known to be only approximately valid. Furthermore, the effects on the force of retraction of chain scission, which doubtless accompanied some of the vulcanizations to a considerable degree, were disregarded. For these reasons, Gee's values for the degrees of cross-linking occurring in his vulcanizates are only approximate estimates, and in a few cases they may be seriously in error. Nevertheless, the general character of the relationship between tensile strength and degree of cross-linking which he obtained is confirmed by our results on rubber samples quantitatively cross-linked with measured proportions of decamethylene-dismethyl azodicarboxylate.

1939 ◽  
Vol 12 (2) ◽  
pp. 269-282 ◽  
Author(s):  
H. I. Cramer ◽  
I. J. Sjothun ◽  
L. E. Oneacre

Abstract The ter Meulen method for the direct determination of oxygen has been adapted, with modifications, to the analysis of raw and vulcanized rubbers. Raney nickel has been found to be quite effective as the reducing catalyst and to be satisfactorily resistant to sulfur poisoning. The method has been applied to the study of the aging of vulcanized rubber in the Geer oven and oxygen bomb. From this study the following conclusions may be drawn: (1) The increase in combined oxygen is greater in the oxygen bomb than in the Geer oven. (2) Deterioration of rubber in the oxygen bomb involves oxidation primarily, whereas that occurring in the Geer oven involves not only oxidation but also thermal decomposition followed by volatilization of oxidation products. (3) The effectiveness of an antioxidant in retarding the absorption of oxygen in oxygen-bomb aging agrees well with its ability to maintain the physical properties of the stock in which it is present. (4) The deterioration in physical properties of a rubber stock in the oxygen bomb during the early stages of aging is a linear function of the increase in combined oxygen. For stocks containing antioxidants and diphenylguanidine as the accelerator, an increase in combined oxygen of approximately 1.2% corresponds to a decrease in tensile strength of 50%. (5) The relationship of increase in combined oxygen to decrease in tensile strength seems to be affected not only by antioxidants, but also by accelerators of vulcanization.


1947 ◽  
Vol 20 (3) ◽  
pp. 747-759
Author(s):  
John O. Cole ◽  
James E. Field

Abstract The effect of heat aging on the physical properties of an elastomer is generally considered the result of oxidation, which produces both chain scission and cross-linking in the polymer. Early in the development of GR-S, a marked difference in the aging of GR-S and natural rubber vulcanizates was observed. From the effect of aging on hardness, tensile strength, modulus, and elongation it appeared that cross-linking occurred more rapidly than chain scission with GR-S, but the reverse was true with natural rubber. The work reported here was undertaken to provide a better understanding of the differences in aging of GR-S and natural rubber and to introduce new experimental methods for studying the mechanism of oxidation and antioxidant action in elastomers.


2005 ◽  
Vol 21 (3) ◽  
pp. 183-199
Author(s):  
G.K. Jana ◽  
C.K. Das

De-vulcanization of vulcanized elastomers represents a great challenge because of their three-dimensional network structure. Sulfur-cured gum natural rubbers containing three different sulfur/accelerator ratios were de-vulcanized by thio-acids. The process was carried out at 90 °C for 10 minutes in an open two-roll cracker-cum-mixing mill. Two concentrations of de-vulcanizing agent were tried in order to study the cleavage of the sulfidic bonds. The mechanical properties of the re-vulcanized rubber (like tensile strength, modulus, tear strength and elongation at break) were improved with increasing concentrations of de-vulcanizing agent, because the crosslink density increased. A decrease in scorch time and in optimum cure time and an increase in the state of cure were observed when vulcanized rubber was treated with high amounts of de-vulcanizing agent. The temperature of onset of degradation was also increased with increasing concentration of thio-acid. DMA analysis revealed that the storage modulus increased on re-vulcanization. From IR spectroscopy it was observed that oxidation of the main polymeric chains did not occur at the time of high temperature milling. Over 80% retention of the original mechanical properties (like tensile strength, modulus, tear strength and elongation at break) of the vulcanized natural rubber was achieved by this mechanochemical process.


2020 ◽  
Vol 990 ◽  
pp. 262-266
Author(s):  
Prathumrat Nu-Yang ◽  
Atiwat Wiriya-Amornchai ◽  
Jaehoon Yoon ◽  
Chainat Saechau ◽  
Poom Rattanamusik

Thermoplastic vulcanizates or TPVs is a type of materials exhibiting excellent properties between thermoplastic and elastomer by combining the characteristics of vulcanized rubber with the processing properties of thermoplastics. This research aims to study the effect of thermal aging on the morphology and mechanical properties of thermoplastic vulcanizates (TPVs) based on a mixture of natural rubber (NR) and polystyrene (PS). TPVs samples were prepared using the internal mixer at a mass ratio of NR/PS 70/30, 50/50, 30/70 and 0/100. Tensile properties and impact strength showed that when the amount of NR increased tends of impact strength and elongation at break increased but tends of tensile strength decreased. On the other hand, tends of tensile strength for thermal aging at 70°C for 3 days increased when the amount of PS increase. The blending ratio of NR / PS at 70/30 is the best. It gave a worthy increase from 19.94 MPa to be 25.56 MPa (28.18%).


1953 ◽  
Vol 26 (1) ◽  
pp. 152-155
Author(s):  
Ira Williams

Abstract The use of oils and liquid softeners to assist in the mastication and processing of rubber or to produce softer vulcanized stocks has been standard practice since the early commercial use of rubber. More recently certain synthetic rubbers, polymerized under special conditions, have been treated with rather large amounts of mineral oils, with a resulting decrease in the cost of the rubber and apparently with no unfavorable effect on the rubber in most instances. A number of investigators have reported the effect of swelling agents on the properties of vulcanized rubber. Busse discusses the effect of solvents in a general way. Tiltman and Porritt conclude that the decrease in modulus caused by swelling in benzene is caused by a “loosening of cohesive forces.” Tire treads of natural rubber containing such softeners as pine tar and mineral rubber decrease in wear resistance in proportion to the softener content. Well vulcanized rubber of high modulus is most resistant to swelling in oils. Naunton, Jones, and Smith find that unaccelerated stocks lose the most tensile strength after being swollen, that milling of the raw rubber increases swelling, and that the presence of softeners in the rubber during vulcanization reduces the oil resistance. A limited amount of swelling has been reported to have little effect on the tensile strength of vulcanized natural rubber. Bourbon points out that separating the rubber molecules with solvent decreases the rate of vulcanization.


2013 ◽  
Vol 773 ◽  
pp. 668-672
Author(s):  
Jun Liang Liu ◽  
Ping Liu ◽  
Xiao Qiang Tang ◽  
Dong Zeng ◽  
Xing Kai Zhang ◽  
...  

In this paper, the blends of natural rubber with waste ground rubber powders have been prepared by mechano-chemical activation method. The influences of particle sizes on both processing performances and mechanical properties have been investigated. The results indicated that: the blends with waste ground rubber powders of smaller particle sizes approached to higher surface tensile and easily mechano-chemical activation, which led to the formation of complete homogenous re-vulcanization cross-linking structure and resulted in the improvements of the whole performances of the final products. The tensile strength, the elongation at break and tear strength approached to the highest value of 20.7MPa, 530% and 33.0 kN/m as the 100mesh waste ground rubber powders were used as the starting materials.


1973 ◽  
Vol 46 (1) ◽  
pp. 47-66 ◽  
Author(s):  
E. C. Gregg ◽  
J. H. Macey

Abstract The causes of some of the differences in properties between compounded natural rubber and compounded synthetic poly (isoprene) have been traced to the insoluble non-rubber material in natural rubber. This material is mostly denatured proteins and is responsible for the higher modulus, faster scorch time, higher heat buildup, and higher hot tear strength of natural rubber. These properties may be related to the pigment effect of the denatured protein to act as a reinforcing filler at low concentrations (3–4 per cent by wt) as well as a curing activator. The greater green strength of compounded natural rubber has been related to its more perfect configurational regularity which contributes to faster crystallization. The crystallite concentration increases with increasing stress and the crystallites act like a reversible reinforcing pigment which disappears when the stress is released. The faster plastication rate has been related to the synthetic stabilizers used. Natural rubber hydrocarbon has been shown to be a high molecular lactone arranged in a six membered ring. We speculate natural rubber forms as a prosthetic group connected through a lactone linkage (or the δ-hydroxy acid precursor to the lactone) to a protein molecule in the cell of hevea brasiliensis. It is this structure of a high molecular weight hydrocarbon (natural rubber) attached to a (denatured) protein molecule that accounts for the remarkable dispersability of the insoluble fraction of natural rubber in rubber solvents : the rubber end of the structure tends to dissolve in the rubber solvent while the highly polar, insoluble protein end prevents solution. This structure is the reverse of a micelle in water in principle.


2010 ◽  
Vol 61 (3) ◽  
pp. 351 ◽  
Author(s):  
M. J. Lategan ◽  
K. Korbel ◽  
G. C. Hose

The cotton strip assay uses the loss of tensile strength of cotton strips as a measure of microbial cellulolytic activity. Its suitability for measuring general microbial activity in groundwater was tested by examining the relationship of tensile strength, abundance of cellulolytic organisms and general microbial activity on cotton strips deployed in bores. The hypothesis was that the strength of cotton strips would decline with increasing abundance and activity of cellulolytic organisms, and as cellulolysis makes resources available to other microbial groups, cotton strength loss should also be related to increased overall microbial activity. The correlation between the abundance of cellulolytic organisms and cotton strength was not significant. Two main factors influenced this relationship: (i) effectiveness of the media in detecting cellulolytic moulds and (ii) inter-community interactions. After accounting for the presence of moulds through partial correlation, the relationship between tensile strength and abundance of cellulolytic organisms was stronger and significant. Both cotton strength and abundance of cellulolytic organisms correlated significantly with general microbial activity. These results support the use of the cotton strip assay, and cotton tensile strength as a surrogate for microbial activity in groundwater.


Sign in / Sign up

Export Citation Format

Share Document